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ABSTRACT 
 
 
The host parasite system of the MSX parasite, Haplosporidium nelsoni, in the eastern 
oyster, Crassostrea virginica, poses many challenges for experimental study.  The 
interactions that are involved in the development of the typically high prevalence and 
intensities of disease encountered in certain environments have not been characterized .  
The parasite is not-culturable and its life cycle outside of the oyster host remains 
unknown, as such the field is the only source of infective tissues available for study. 
 
The main goals of this research were to first, explore of potential protein targets involved 
in infection; second, investigate the tissues that provide optimal comparative value and 
third, test methodologies that allow for clear comparative analysis. In order to investigate 
this host parasite system it was first necessary to develop an experimental design that 
enabled the consistency of samples and reliable diagnosis of their disease state.  Arriving 
at an experimental design involved the implementation of several laboratory protocols 
including one and two dimensional protein gel electrophoresis, enzymatic assays, the use 
of two diagnostic methods, field sampling and experimental field infection, in order to 
determine the most promising approach to describing the host parasite interaction.   
 
Two environmental systems in which MSX infects the eastern oyster were studied, the 
Bras dÕOr lakes, Cape Breton, Nova Scotia, Canada and the York river system of the 
Chesapeake Bay, Virginia, USA. Within the Bras dÕOr lakes samples, a population of 
oysters was discovered in which parasite pressure was present but the manifestation of 
disease within the tissues of oysters from this population was not found. The 
identification of a differential response to parasite pressure led to the comparison of 
proteins involved in disease from the three Bras dÕOr lakes populations sampled. The 
new landscape of the parasiteÕs presence in the Bras dÕOr along with the targeting of 
several tissues and the comparison of different individuals with different disease states 
highlighted the need to control for variability in protein profiles. 
 
The concentration of further comparative protein analyses to the Chesapeake Bay system 
allowed for the experimental field infection of na•ve oysters and thus the comparison of 
proteins from the same individual oysterÕs haemolymph over time.  Once collected, these 
samples were grouped based on final infection intensity and the comparison of protein 
profiles indicated the presence of a protein after exposure to an MSX impacted area.  This 
differentially expressed protein was identified as actin and was consistently observed in 
the cell free haemolymph lysates from all intensity classes studied.  The comparison of 
proteolytic activity of haemolymph over time and between final infection intensity 
classes identified a protease present within the initial haemolymph samples (naive 
individuals) occurring at a significantly higher frequency within those individuals that 
went on to develop high intensity infections.  This finding suggests a protein 
differentiation found within the na•ve population that impacts the outcome of infection of 
these individuals.  The potential of this protease as a marker for heightened disease 
susceptibility may provide insight into the overall disease process of H. nelsoni within 
this host.  Enzymatic activity also differed significantly among infection intensity classes, 
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as alkaline phosphatase increased over time within intensity groups, as well as 
comparatively between infection intensities.  The monitoring of this activity may allow 
for the disease to be tracked more readily in populations through testing of haemolymph 
over time. 
 
Having established some technical protocols that aided in clearly displaying constituent 
proteins from oyster tissue samples, the experimental field trial was established to 
compare the haemolymph of the same individual over time and exposure to MSX.  This 
led to the identification of protein, protease and enzymatic changes associated with 
infection intensity.  The success of this approach can aid in further characterization of 
infection as well as establish important indicators of the point at which disease may 
occur. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 XII  

Acknowledgements 
 
 
The work presented in this thesis has been completed with the help and guidance of many 
individuals.  My supervisors Dr. Neil Ross, Dr. Fred Markham and Dr. Franck Berthe 
have had the greatest role in acting as incredible mentors and providing help and 
encouragement through different stages of this research.  Dr. Franck Berthe was 
instrumental in establishing the trajectory of this work, his enthusiasm and support 
allowed me to explore ways in which to tackle this difficult study system.  Dr. Fred 
Markham has been key in supporting the continuation of this research despite many 
hurdles, he has been encouraging, knowledgeable and a driving force throughout my 
program. Dr. Neil Ross has been a steady and supportive mentor, whose positivity and 
insights into my work have been a necessary part of my success.  
 
Dr. Jeff Davidson has been a highly involved member of my supervisory committee who 
has played a key role in the establishment of this work as well sharing his vast knowledge 
of mollusc aquaculture and habitats.  Both Dr. Gerry Johnson and Dr. Fred Kibenge have 
served on my committee as the departmental chair and have contributed to my program 
and offered much support. 
 
I would like to thank the Department of Pathology and Microbiology for the support of 
staff and faculty as well as financial support during my tenure.  As well many thanks to 
the staff of Department of Graduate Studies and Research and the GSR committee for 
their continued support.  The Atlantic Veterinary College and University of Prince 
Edward Island provided an outstanding education and facilities that enriched my graduate 
experience immensely. Aquanet contributed to the inital stages of my project through 
funding for much of my fieldwork and stipend. 
 
Many thanks to the wonderful group of people I have had the pleasure of working with 
and getting to know in the Mollusc Health Laboratory; Patty McKenna, Garth Arseneau, 
Kathy Jones, Maryse Delaporte, and Ahmed Siah along with my fellow students 
Stephanie Synard, Sarah Clark, Dante Mateo, Membrahtu Araya and Mohammed.  All of 
whom contributed to my technical training as well as became good friends.  
 
I received an enormous amount of help with field sampling and sample analysis in 
working with several organizations. VIMS at which a portion of my research was 
graciously contributed by Dr. Eugene Burreson and Dr. Ryan Carnegie whose interests 
were peaked by my study when I was visiting for technical training and thus led to the 
collaborative research presented in Chapter 4. The team at VIMS including Nancy 
Stokes, Rita Crockett, Susan, Kristie and Corinne Audemard were extremely helpful, 
enthusiastic and above all welcoming.   The field component of my work in Cape Breton 
was facilitated by both the NSDAF through Dr. Roland Cusack and his team (Andrew 
Bagnell, Carl Huntington, and Adam Olgavie) as well as DFO through Mary Stephenson, 
Anne Veniot, and Nellie Gagne.  I was able to complete sample processing at CBU in 
professor Rod BerefordÕs lab and analyses at the NRC ÐIMB in Dr. Neil RossÕs lab and at 
SMU in my mentor Dr. David ConeÕs lab, who provided financial support and 



 

 XIII  

professional development in the latter stages of my program and to whom I am eternally 
grateful. 
 
Arriving at this completed work has been filled with personal struggles and joy that I 
have shared every step of the way with my loving husband Troy.  His support has been 
instrumental in my success and his belief in me has been constantly present.  My mother 
and father have never wavered in their belief in me, and what I can accomplish and that 
has been a huge comfort in my life. My sisters and their families have been a great 
support to me in listening to my struggles and providing sound advice.  I am blessed with 
close caring friends and wonderful in laws and extended family who have also provided 
support for me over the course of my program.  
 
Finally, the journey to complete this research was twice interrupted for the best of all 
reasons - the addition of my two sons to our family.  Emerson and Silas, you have given 
me the greatest joy and the best motivation to complete this work that was started before 
you were born.   I hope you will be able to be proud when you look at this research 
someday and be inspired to live the fullest life you can, knowing that with hard work you 
can do anything no matter how difficult it may seem.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 XIV  

 
 
 
 
 
 
 
 

DEDICATION 
 
 

TO EMERSON AND SILAS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 XV 

List of Tables 
 
CHAPTER 1. Literature Review 
 
Table 1. Summary of viral diseases impacting oyster speciesÉÉÉÉÉÉÉÉÉ.42  

 
Table 2.  Summary of bacterial diseases impacting oyster speciesÉÉÉÉÉÉ..É43  
 
Table 3. Summary of diseases of unknown cause impacting oyster speciesÉÉ...É.44  
 
Table 4. Summary of pests and commensal organisms impacting oyster species.É...45 
 
Table 5. Summary of parasitic diseases impacting oyster speciesÉÉÉÉÉÉ...É46  
 
CHAPTER 2. Comparison of Haplosporidium nelsoni infections of Crassostrea 
virginica across three localities in the Bras dÕOr Lakes, Cape Breton, Nova Scotia. 
 
Table 1: Prevalence determined from each sampling locality through PCR analysis. 
Numbers in brackets indicate number of oysters sampledÉÉÉÉÉÉÉÉÉ..É.76  
 
Table 2: Prevalence determined from each sampling locality through histological 
analysis. Numbers in brackets indicate number of oysters sampledÉÉÉÉ...ÉÉ.77  
 
Table 3: Intensity ranges determined from each sampling locality through histological 
analysis.  LO Ð localized, R Ð rare, L Ð low, M Ð moderate, H Ð heavy, S Ð systemic. 
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..78   
 
CHAPTER 4. Differential protein expression from haemolymph of Crassostrea 
virginica following field infection with Haplosporidium nelsoni in Gloucester Point, 
Virginia USA.  
 
Table 1: Prevalence of infections with MSX and Dermo as determined by histology and 
PCR diagnostics at the final harvest collection of oysters from the study site at lower 
York River, Virginia, USA from experimental trials held in 2006 and 2007. 2007 oyster 
collection occurred prior to infection with DermoÉÉÉÉÉÉÉÉÉÉÉÉ....138  
 
Table 2: Average protein concentration (µg/µl) among the intensity classes of oysters 
deployed in 2007 within the lower York River, Gloucester Point, Virginia, USA at three 
sampling points. P-values of One way ANOVA analysis testing significant differences 
within intensities over time and also among intensity classes at each time point provided 
with * denoting significance (P<0.05)ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ141  
 
 
Table 3: Abundance of protein band of interest among intensity classes and across 
sampling times with the comparison of abundance over time within intensity classes 
using the Fisher exact test, * denotes significance (p<0.05)ÉÉÉÉÉÉÉÉÉ...144  



 

 XVI  

 
Table 4: Comparison of abundance of protein band of interest among intensity classes at 
the final sample point, two months post deployment using a FisherÕs exact test, * denotes 
significance (<0.05)ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉ.É145  
 
Table 5: Identities yielded from Mass Spectrometry analysis and subsequent Mascot 
search of SwissProt database.  Each excised band reports a most likely identity based 
upon overall protein score (-10*LOG10(P), where P is the absolute probability that the 
observed match is a random event, with a score of greater than 67 being significant 
(p<0.05)), number of similar peptides and individual peptide scores, predicted mass and 
original species from which protein was described.  Secondary protein matches are also 
providedÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.É.146  
 
Table 6: Number of individual oysters with high MW (140-200 kDa) proteolytic bands in 
each intensity class, from the first sample collection pre-infection in 2007. Tests for 
significance between numbers of bands found in highest intensity class compared with all 
other intensity classes are provided, * denotes significance p<0.05ÉÉÉÉÉ..148  
 
Table 7: Average Lysozyme activity (units of activity/ug of protein) from haemolymph 
taken from oysters belonging to each intensity class at each of the three sampling points 
(1-pre-infection, 2- two weeks post deployment in experimental field conditions, 3 Ð final 
harvest from field). P-values of One way ANOVA analysis testing significant differences 
within intensities over time and also among intensity classes at each time point provided 
with * denoting significance, p<0.05ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ...149  
 
Table 8: Average Alkaline Phosphatase activity (units of activity/ug of protein) from 
haemolymph taken from oysters belonging to each intensity class at each of the three 
sampling points (1-pre-infection, 2- two weeks post deployment in experimental field 
conditions, 3 Ð final harvest from field). P-values of One way ANOVA analysis testing 
significant differences within intensities over time and also among intensity classes at 
each time point provided with * denoting significance, p<0.05ÉÉÉÉÉÉÉ..150  
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 XVII  

List of Figures 
 
CHAPTER 2. Comparison of Haplosporidium nelsoni infections of Crassostrea 
virginica across three localities in the Bras dÕOr Lakes, Cape Breton, Nova Scotia. 
 
Figure 1: Bras dÕOr Lakes Cape Breton, Nova Scotia, Canada.  Sampling localities, 
active disease area; Nyanza Bay (1), limited disease identified; East Bay (2), new 
sampling locality; LyncheÕs River (3)ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ79  
 
Figure 2: A. PCR results from four individuals (2, 3, 4, 5) collected from LyncheÕs River, 
NS, whose histological analysis showed no evidence of infection with Haplosporidium 
nelsoni, with positive (6) and negative (1) controls. B. PCR results from five individuals 
(1, 2, 3, 4, 5) collected from East Bay, NS, whose individual histological analysis showed 
no evidence of infection with Haplosporidium nelsoni, with positive (7) and negative (6) 
controlsÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ80  
 
Figure 3: Evidence of active sporulation (! ) within the digestive gland of C. virginica 
collected from Nyanza Bay. ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..É.81  
 
Figure 4: Prevalence (%) obtained using each diagnostic method (PCR and Histology) as 
well as intensities observed through histological screening from each sample 
localityÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.82  
 
CHAPTER 3. Comparison of protein profiles of Haplosporidium nelsoni infected 
and uninfected Crassostrea virginica tissues collected from the Bras dÕOr Lakes, 
Cape Breton, Nova Scotia. 
 
Figure 1: One dimensional SDS-PAGE profiles of gill, mantle, and digestive gland of 
four representative individual oysters with (1, 2) and without (3, 4) evidence of infection 
with Haplosporidium nelsoni.  Different detergent fractions (DDFs) included, (A) 20 mM 
TrisHCl, pH 7.5 buffer; (B) Digitonin buffer; (C) Triton X-100 buffer; (D) 
Tween/Deoxycholate buffer all separated on 12% polyacrylamide gelsÉÉÉÉ....101  
 
Figure 2: Two-dimensional gel electrophoresis profile of gill, mantle and digestive gland 
proteins for one sample before incorporation of a dialysis preparative protocol (A). Two-
dimensional gel electrophoresis profiles of gill mantle and digestive gland proteins of 
four representative individual oysters (B) with (1, 2) and without (3, 4) evidence of 
infection with Haplosporidium nelsoni.  First dimension run on pH 4-10 IPG strips and 
the second dimension run on 14% polyacrylamide gelsÉÉÉÉÉÉÉÉÉ...É.102  
 
 
CHAPTER 4. Differential protein expression from haemolymph of Crassostrea 
virginica following field infection with Haplosporidium nelsoni in Gloucester Point, 
Virginia USA.  
 



 

 XVIII  

Figure 1: Map of Chesapeake Bay, Virginia, USA, coastline indicating collection site 
within the Rappahannock River (1) and deployment study site at lower York River 
(2)ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ..137  
 
Figure 2: Distribution among intensity classes as determined through histology at final 
harvest of experimental oysters deployed in 2007 within the lower York River, 
Gloucester Point, Virginia, USAÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉ..139  
 
Figure 3: Intensity class groupings for analysis of protein changes, proteolysis, and 
enzymatic activities of oysters over course of 2007 field exposure to MSXÉÉ...140  
 
Figure 4: Protein profile of haemolymph protein (200 ug) collected from one individual 
oyster run on a two dimensional electrophoresis gel (14%) and silver stained for 
analysisÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.142  
 
Figure5: SDS Page gel of heamolymph from four individual oysters deployed within the 
lower York River, Gloucester Point, Virginia, USA. One individual representing each 
intensity class (N: None, R-L: Rare and Low, LM-M: Low-Medium and Medium, MH-
H: Medium-High and High) at each of the sampling points (1-Initial collection, 2- two 
weeks post deployment in experimental field conditions, 3 Ð final harvest from 
field)ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.143  
 
Figure 6: Zymography gel (A)  of haemolymph samples from three individual oysters 
representing three intensity classes (L- Rare-Low, M- Low Medium- Medium, and H Ð 
Medium-High and High) sampled at three time points. Zymography gel (B) of 
haemolymph samples from eight individual oysters representing four intensity classes (R-
Rare, L-Low, M-Medium and H- High) all taken from the initial sampling time, pre-
deployment exposure to MSX infected water system.  Arrow indicates ubiquitous 110 
kDa protease band, arrowheads identify high molecular weight bands (140-200 
kDa)ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ.147  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1 

 

 

 

 

 

CHAPTER 1 

 

GENERAL INTRODUCTION  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

The intimacy shared between a parasite and its host species is a relationship like none 

other on earth.  The complexity of these seemingly simple organisms in their ability to 

utilize the tissues, molecules and resources of a separate organism remains an area of 

research with many unanswered questions.  In certain host parasite systems the impacts 

of the parasite on host population can be so detrimental as to threaten the very existence 

of certain species within certain geographical areas (Bremmerman and Thieme, 1989; 

Regoes et al., 2000; Gozlan et al., 2005; Otti and Schmid-Hempel, 2008; Rutrecht and 

Brown, 2008; Shirakashi et al., 2008; Rutrecht and Brown, 2009; Rigaud, 2010 et al.).  

One such example is the parasite commonly known as Multinucleated Spore X (MSX), 

Haplosporidium nelsoni, that affects Eastern oyster, Crassostrea virginica, populations of 

the North East Atlantic coast of North America through large scale mortalities caused by 

the parasiteÕs detrimental disease processes.  This parasite has eluded many attempts in 

characterizing the transmission, and proliferation of individual parasites following 

invasion of host tissues (Burreson 2004).  The spread of MSX to the Canadian East coast 

in 2002 stimulated research trying to understand how the host-parasite interaction in 

Canadian waters differs from established ranges of the past half century along the shores 

of the Eastern US.  The body of work presented here targets proteins as indicators of 

disease and aims to lend insight into how the parasite impacts the host at the biochemical 

level. 

 

1.0 The Eastern Oyster, Crassostrea virginica 

 

1.0.1 History & Distribution 

 

Crassostrea virginica, the eastern oyster, (phylum Mollusca, class Bivalvia, order 

Ostreoid, family Ostreidae) is a North and South American endemic species whose range 

includes much of the western coast of the Atlantic Ocean (Kennedy et al., 1996).  Fossil 

records have indicated the presence of the eastern oyster along shoals in tundra areas off 

the coast of North America.  The eastern oyster has an established range of populations 

from the Maritime Provinces of Eastern Canada to the Gulf of Mexico. Reports have 

identified C. virginica as far north as the St. Lawrence River as well as its southernmost 
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account in Brazil, although some speculation suggests there may be distinct genetic 

species with similar morphological characteristics to those of C. virginica (Eastern Oyster 

Biological Review Team, 2007).  Along with the natural range of the species, 

transplantation has occurred and certain transplant populations are also noted to exist 

along Western North America, the Hawaiian Islands, Japan and England (Kennedy et al., 

1996).   

The eastern oyster has been well documented throughout history as an important species 

for food and as part of the culture of First NationsÕ communities, as well as early settlers 

in North America (Lavoie, 2011; Kennedy et al., 1996; FAO, 2004; Scarfe 2006 Ð First 

Nation stakeholder).  Though some accounts have reported vast populations existing 

within the last 150 years along the western shore of the Atlantic, historical populations 

can only be traced through shell deposits in many estuaries (Eastern Oyster Biological 

Review Team, 2007). As a food commodity, C. virginica, is highly regarded and sought 

after product within the fisheries market.  While other commercial oyster species have 

established successful culture industries (namely, Crassostrea gigas, Ostrea edulis, and 

Crassostrea ariakensis), C. virginica remains a choice product that consumers and 

producers alike continue to rely on.  In North America, the eastern oyster has seen a 

significant decline in both natural harvest and culture mainly due to disease, 

environmental and management factors (MacKenzie 2007).   

  

1.0.2 Fishery in Atlantic Canada and the Bras dÕOr Lakes  

 

The eastern oyster has established populations within Atlantic Canada along the Northern 

and North Eastern New Brunswick Coastline, in Prince Edward Island and some Atlantic 

coastal communities of Nova Scotia.  The oyster industry consists of both public beds, for 

which recreational leases may be purchased, and leased beds managed by the 

leaseholders.  First Nations communities have traditional uses for the fishery, both as an 

income source and for food and ceremonial purposes.  Harvest from both types of leases 

typically occurs between mid-September and the end of November when oysters have 

reached marketable size of a minimum 76mm shell length after an average of 2 to 4 years 

of growth (Lavoie 1989).  Farmed oysters have not been the typical product produced 



 4 

from this region, however, there is increasing farming of oysters in the region (N.Ross, 

personal communication).  Long rakes or tongs are used for harvest, although snorkeling, 

diving and low tide harvest along the shallow bed habitat that the oysters prefer are also 

popular means used for collection.   

 

The Eastern oyster fishery in the Bras dÕOr Lakes has been recorded since 1876 (Lavoie 

2011).  The warmer temperatures found within the lakes system, as opposed to the 

exposed coastline of the North Atlantic coast of Nova Scotia, along with reproduction 

and seed proliferation within the sheltered low tidal pressures found in the unique system 

of the Bras dÕOr support richer beds than those along the exposed coast.  Settlement of 

seed on eel grass that is subsequently displaced within seasonal fluctuations causes losses 

of an estimated 90% of seed that is released into this environment.  The remaining stocks 

are made up of those individuals whose settlement took place on the hard bottom of the 

shallow inland shores of the water system.  Relay fisheries exist within the lakes allowing 

oysters from poor environmental areas to be placed in pristine waters in order to allow 

depuration and subsequent availability to the market (Lavoie 1989).  The value of the 

Nova Scotian Eastern oyster fishery in 2001 before the MSX outbreak was valued at 

$1,202,811.00 (total production of 420,463 MT and 3.3% of the total aquaculture species 

production). Current statistics indicated a decrease of 56.2% in its value as of 2009 

($676,105 with a total production of 158,742 MT and 1.17% of the total aquaculture 

species production) (Nova Scotia Department of Fisheries and Aquaculture, 2011). Most 

of this loss can be attributed to the decline of the Bras dÕOr industry following the 

introduction of the MSX (H. nelsoni) parasite. 

 

1.0.3 Biology 

 

Crassostrea virginica is a monomyarian bivalve, whose structure is bilaterally 

asymmetrical (Eble 1996).  The left valve is used for settlement and will often appear 

notably thicker and more deeply cupped than the upper right valve.  Overall shell shape 

and thickness are highly dependent on the substrate to which the individual oyster is 

attached and develops on.  Hard substrates produce thick rounded shells with radial 
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ridges and more markedly curved umbones (thickest and oldest section of shell, found to 

lie dorsally in most species), while silty substrates tend to form thin slender shells with 

straight umbones and fewer ridges.  A distinguishing character of the eastern oyster 

species is the purple scar where the adducter muscle attaches after metamorphosis.  

Overall morphology is noted as being quite variable in adults of the species due to varied 

environmental pressures as well as a general lack of selection pressure on adult forms, 

while the larval stages exhibit more constant morphological and behavioural 

characteristics due to pressures for long term survival, spread and success (Eble, 1996).   

 

The eastern oyster reproductive system is rooted in the proliferation of high numbers of 

progeny in order to spread offspring in varied and widespread environments that are 

suitable for growth and establishment (Eastern Oyster Biological Review Team, 2007).  

Members of the species are protrandric, maturing primarily as males with a subsequent 

change to female in later life stages (Eble, 1996).  This action is thought to be reversible 

in some cases.  Influences on an individualÕs sex are quite varied and include responses to 

annual changes in environment, physiology and nutrition.  It has also been brought forth 

that the sex of neighboring oysters can impact sex of individuals, with changes occurring 

between spawning seasons when the gonad is undifferentiated.  Overall fecundity is a 

complex measure that is skewed by variable yet prolonged spawning periods and the 

gonadal tissues being incorporated into the surrounding tissues.  Spawning is triggered by 

both temperature (above 20¡C) and salinity (above 10 psu) as well as physiochemical 

triggers (Kennedy et al.,1996). 

 

After fertilization, a trocophore develops and depending on environmental triggers can 

last in this non-feeding stage for up to two days (Thompson et al., 1996). The veliger 

stages are planktotrophic and can last up to two months, during which they undergo 

morphological changes that result in larvae with a fully developed foot aiding in 

migration to an appropriate settlement locale.  This foot is then reabsorbed during 

metamorphosis into the permanently attached oyster.  The larval stages utilize both 

passive and active transport in order to disperse in their environment; the cues initiating 

settlement are both environmental and internal.  Settlement can be repeated but only 
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reversed before metamorphosis has taken place.  Final metamorphosis is initiated upon 

response to salinity and cues emanating from biofilms and proximity to established oyster 

populations indicating good substrate and environmental conditions for attachment and 

growth.  The entire process will typically be carried out over a period of 2-3 weeks after 

hatching, however the environmental conditions have a significant impact on progression 

of development. (Thompson et al., 1996) 

 

1.0.4 Habitat and Environment 

 

Major influences on growth and development include temperature, salinity and 

food availability, with temperate regions seeing maximal growth in the summer months 

and more southerly regions yielding faster growth and production of offspring 

(Shumway, 1996).  The limits for salinity tolerance that have been recorded range from 

0-42 psu with optimal levels ranging from 14-28 psu.  The eastern oyster can survive 

freezing temperatures and tolerate up to 45¡C but will grow and function optimally at 20-

30¡C.  Growth in the earliest stages of life is most rapid, but slows gradually after the 

first six months.  In standard conditions, growth can reach 15cm within 5-6 years.  

Harvestable oysters (measuring between 76-90mm) can be produced at different intervals 

depending on the conditions of the location in which they are grown (Shumway, 1996).       

 

1.1 Pathogens and Disease of Mollusks 

 

Many of the known pathogens and diseases of oysters, and mollusks for that matter, have 

been described in species that have been cultured, since stocks of cultured shellfish are 

heavily monitored and extensive mortalities are often investigated to identify a cause.  

The broader importance of these pathogens in the context of natural environments and 

within populations whose structure is not set up for culture (crowding, stress) is not well 

understood.  Often the manipulations of large scale commercial fisheries confound the 

expression of opportunistic pathogens whose effects would otherwise be minimal in a 

more natural setting.  Likewise, there is likely a multitude of pathogenic species that are 

unknown to the scientific community due to the fact that host species in which these most 
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readily occur are not studied with the same frequency or scrutiny that their commercially 

cultured cousins are. Bower (1994) compiled a comprehensive synopsis of diseases 

affecting shellfish with the emphasis on those which are found to occur in Canada and are 

of regional importance, those which are in Canada of negligible importance, as well as 

those that have not been reported in Canada or whose hosts are not found in Canada.  The 

following section outlines the various threats to oyster stocks in which an immune 

response may be mounted and in some cases successful, and thus may be relevant to the 

current work. 

 

1.1.1 Viral Diseases 

Many of the popularly cultured oyster species have associated viral pathogens whose 

effects can be detrimental especially in a culture setting (Table 1). Currently, the Herpes 

virus is causing high mortalities in France (up to 50%), impacting the highly valued 

French oyster industry (Segarra et al., 2010, Sauvage et al., 2009, Cor Poppe, personal 

communication). 

 

1.1.2 Bacterial Diseases 

As seen with viral diseases, bacterial pathogens have been observed and identified mostly 

with cultured species (Table 2).  Some may see an increase in overall impact due to the 

occurrence of other stressors and pathogens impacting on the same host population. 

 

1.1.3 Diseases of Unknown Etiology 

Several disease agents have eluded concrete identification despite their impacts on host 

populations (Table 3).  One such disease noted from the Atlantic Canadian region is 

Malpeque disease. High level mortalities of Eastern oyster populations were first reported 

by Needler and Logie (1947) and later confirmed by Drinnan and Medcof (1961) in 

Atlantic Canada.  A causative agent for these mortalities has never been established but 

this agent still exists within the region.  Na•ve oysters placed in these bays exhibit the 

same rapid and high prevalence mortality as demonstrated by initial reports. These oyster 

populations remain closed to movement outside the affected region for aquaculture so as 

not to spread disease to na•ve stocks. Malpeque disease was found associated with 
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mortalities in oyster populations in the Bras DÕOr lakes and Aspy Bay Cape Breton in 

2007 (Vaercaemer et al., 2010; Lavoie, 2011).  Attempts to identify a causative agent 

using PCR of random selections of tissue sections collected from control and infected 

animals yielded no banding differences (Lavoie, 2011). 

 

1.1.4 Pests 

Unlike pathogenic microorganisms there exists several species of aquatic 

macroorganisms that cause disease and mortality in oyster species through predation and 

utilization of oyster tissues for attachment and feeding (Table 4).   

 

1.1.5 Commensal Organisms    

The tubellarian Urastoma cyprinae (Burt and Drinnan, 1968) has been reported from the 

gills of bivalves, including Crassostrea virginica.  While it induces pathology in the gill 

tissues of the mussel Mytilus galloprovincialis (Robledo et al., 1994), this response has 

not been described in oysters infected with U. cyprinae (McGladdery et al., 1992 and 

1993). It was proposed by Burt and Drinnan (1968) that U. cyprinae in fact occurred as a 

commensal organism in C. virginica.  

 

1.1.6 Parasites 

Of all the pathogen groups impacting oysters, parasites appear to be the most destructive 

(Table 5).  In many cases the effects of a parasite species is accentuated through its 

introduction into a na•ve population often made up of a species closely related to, but not 

its original endemic host.  Parasitic species straddle a delicate balance between taking 

what is needed from a host in order to survive and propagate and the need for the host to 

stay alive and function in order to maintain their internal environment and continue 

proliferation.  Often a balance is achieved in many long standing host-parasite 

relationships over the course of generations of both host and parasite, co-evolving to the 

point of minimal impact (Bremmerman 1989).  However, if a parasite gains access to a 

na•ve population of hosts of a different species, the impacts of the parasite can be very 

grave.  This is due to the host not having evolved any specified defense mechanisms 

toward this particular pathogen, and without an effective immune response the parasite 
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can often quickly overwhelm the host and cause disease and mortality within a region 

and/or population (Bremmerman and Thieme, 1989; Regoes et al., 2000; Gozlan et al., 

2005; Otti and Schmid-Hempel, 2008; Rutrecht and Brown, 2008; Shirakashi et al., 2008; 

Rutrecht and Brown, 2009; Rigaud, 2010 et al.).   

 

1.1.7 Parasitic Protozoans of Molluscs 

Protozoal parasites seem the most successful of all the parasite groups found in oysters 

(Table 5).  Their impacts vary from species to species, but it is thought that there are a 

great abundance of species that have not yet been discovered that occur in non-

commercial oyster species worldwide.   

 

1.1.7.1 Perkinsus spp. 

The genus Perkinsus represents protistan parasites of mollusks from around the world.  

The life cycle of these parasites includes vegetative proliferation in hosts with trophozoite 

cells undergoing successive bipartitioning. There are seven valid species representatives 

including, P. marinus, P. olseni, P. qugwadi, P. cheasepeaki, P. andrewsi, P. 

mediterraneus (Villalba et al., 2004) and Perkinsus beihaiensis (Moss et al., 2008). 

 

Perkinsus marinus or Dermo is a protozoan parasite of the eastern oyster that was first 

identified by Mackin 1950, from diseased oysters in Virginia, and has been studied 

extensively since its first report.  It causes increased mortality in stocks over multiple 

seasons, with the second season yielding mortalities of around 50% and the third season 

with mortality reaching 80-90%.  The gross impact on hosts includes the progression of 

the parasite throughout host tissues, interfering with host energy fluxes, slowing growth, 

and causing energy deficiencies impacting gametogenesis. The parasiteÕs range is thought 

to be limited by temperature with sustained infectious populations occurring along the 

western Atlantic and Gulf coasts from southern Massachusetts to the Gulf of Mexico.  

There have been a number of reports resulting from presumed introductions in Hawaii as 

well as along the northern Atlantic coast including Maine.  Spread of this pathogen 

through the Chesapeake system has resulted from the moveent of infected oyster seed  

(Villalba et al.,  2004).   
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Cold temperatures can reduce overall impact of the Dermo parasite even in sustained 

populations (Villalba et al., 2004).  It is thought that a warming trend could result in areas 

now minimally affected by the presence of the organism showing an increase in infection 

and mortalities.  Interestingly, there is evidence of variations of resistance in host 

populations of the eastern oyster in different locales (maybe due to genetic variation 

among the distinct populations), as well as some evidence of parasite tolerance and 

pathogenicity differences to environmental conditions dependent on location (The 

Eastern Oyster Biological Review Team, 2007).   

The lifecycle of the Dermo parasite is completed through direct transmission from 

infected to na•ve oysters (Mackin, 1962).  Spread is extensive within infected populations 

and mortalities resulting from infection tend to peak in summer months when temperature 

and salinity are at highly optimal levels, although the parasite is able to withstand wide 

ranges of both temperature and salinity fluctuations.  The parasite thrives in high salinity 

waters, but even if salinity levels lower in bays where the parasite is well established, 

they can persist at 5psu for up to 3 months until salinity levels return to the normally high 

levels in these bays.  Temperature is more of a concern in areas with larger seasonal 

fluctuations.  In the Chesapeake system, both prevalence and intensity increase in late 

spring when temperatures rise above 20¡C, these later infections often result in 

overwintering of the parasite (Villalba et al., 2004).  The highest mortalities are seen in 

late August and September, while over the winter regression takes place and newly 

acquired infections do not reoccur until late summer the following year coincident with 

mortalities. Some evidence has been obtained showing that transmission can occur in rare 

instances without associated mortality (Ragone-Clavo et al., 2003).  In areas of intense 

culture, Dermo disease has become managed by getting oysters to market prior to 

mortalities, not through mitigating the disease in the long term. Population density plays 

an important role in the transmission of Dermo disease due to the direct lifecycle. Age of 

the host seems a contributing factor as well, with older individuals experiencing more 

disease in the same culture areas, thought to be a result of higher filtration and longer 

exposure periods experienced by this group (Villalba et al., 2004).  
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Proposed Dermo management strategies are varied and include modified culture 

procedures which utilize natural environmental limitation of the disease but can be 

compounded by the presence of additional pathogens (e.g. MSX) in same geographic 

regions. Additional strategies include selective breeding and resistant strain development, 

encouraging increased tolerance over time due to natural selection, and triploid oyster 

development which provides no evidence of increased tolerance but quicker growth to 

market size.  Genetic engineering and gene transfer is also being investigated along with 

allochtonous species introduction (C. ariakensis), and the use of chemotheraputant 

treatments to kill free infective cells (Villalba et al., 2004).  All of the proposed strategies 

are accompanied by benefits and costs to natural integrity of populations, environmental 

risks, and overall improved production of cultured species all sources of great debate. 

 

1.1.7.1.2 Diagnostics 

The study of Perkinsus spp. has been greatly advanced by the ability to culture the 

parasite and facilitate experimental infection of oyster hosts.  Ray (1966) devised a 

diagnostic culture method that aided in quick and accurate identification within infected 

populations.  Subsequent propogation of the parasite from histozoic stages (Kelinschuster 

and Swink 1993; La Peyre et al., 1993; Gauthier and Vasta, 1995, 2002; La Peyre and 

Faisal, 1995; La Peyre, 1996) allowed studies of growth, stages, environmental 

influences, host interactions and physiology of the parasite through its lifecycle (Krantz, 

1994; OÕFarrell et al., 2000; Gauthier and Vasta, 2002; Brown et al., 2005; La Peyre et 

al., 2006, Ford and Chintala, 2006; Lund et al., 2007; La Peyre et al., 2008). 

 

1.1.7.2 Haplosporidians 

Members of the Phylum Haplosporidia are obligate parasite of a diverse number of 

marine and freshwater invertebrates. It comprises species of the genera Urosporidium, 

Bonamia, Minchinia and Haploposporidium, although species of Haplosporidium make 

up a paraphyletic grouping and revision of the genus has been recommended (Burreson 

and Reese, 2006; Hine et al., 2009).  These parasites have a plasmodial stage and are 

spore forming with the ornamentation of different speciesÕ spores noted as an important 

taxonomic feature.   
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Haplosporidium armoricana occurs in France, Spain, and the Netherlands in Ostrea 

edulis and O. angasi. There was also a single report from Oregon in imported Olympia 

oysters (O. conchaphila) (Mix and Sprauge, 1974).  Spore masses are identified as 

occurring in the connective tissues. Within an established culture setting the disease 

occurs at very low prevalence (1%) but when oysters from an unexposed population are 

introduced they are greatly impacted by the parasite. High prevalences and mortalities in 

na•ve populations are likely due to the lack of defense mechanisms to fend off infection 

that those who have generational exposure developed over time. 

Haplosporidians have been found in hatcheries of the pearl oyster Pinctada maxima in 

Australia.  However those identified as harbouring infection were destroyed so impact of 

the parasite and strict identification of species is unknown.  The parasite was noted to 

occur in the connective tissue of the digestive gland of those individuals identified as 

infected.  Also in Australia, the rock oyster Saccostrea cuccullata was found to be 

infected with Haplosporidium sp. in the report of epizootics reaching 3-27% prevalence 

in the northeast.  Infections were often heavy with plasmodia and sporulation taking place 

in the connective tissue with very little defensive response noted via histology (lack of 

haemocyte infiltration), but an abundance of brown cells, or pigmented excretory 

haemocytes, were noted in these heavy infections (Hine and Thorne 2000, 2002). 

 

1.1.7.2.1 Haplosporidium costale, SSO (seaside organism) 

 

Haplosporidium costale is found in high salinity (above 25 psu) waters from Long Island 

Sound, New York to Cape Charles, Virginia.  In addition, plasmodia of H. costale have 

been identified at low prevalence and intensity along the southern gulf of Saint Lawrence, 

the Atlantic coast, and within the Bras DÕOrs lakes in Nova Scotia (DFO report not 

published).  Within its range along the US coast, it can be associated with seasonal 

mortality in late spring corresponding to the sporulation of the parasite (Couch and 

Rosenfield, 1968; Andrews and Castagna, 1978; Andrews, 1984).  The mode of 

transmission for H. costale is unknown and life cycle details including the presence or 

absence of intermediate host(s) is also unknown.  Management of disease is sometimes 
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facilitated through movement of stock to areas of low salinity where the disease process 

is impeded.   

 

1.1.7.2.2 Haplosporidium nelsoni, MSX 

 

Haplosporidium nelsoni (Kingdom: Protista, Supergroup: Rhizaria, Phylum: 

Haplosporidia), was first reported in oysters from Delaware Bay in the fall of 1957 with 

massive mortalities occurring in the spring of 1958. An unknown organism identified as 

the causative agent of the observed mortalities was referred to as ÒMSXÓ (Multinucleate 

Sphere X unknown) (Haskin et al., 1966). Plasmodia of the parasite occur within the 

connective and epithelial tissues of the gills and gut and are identified through their 

multinucleate nature as well as their size (5-15 µm in diameter, though they can be 

larger) and sporulation of the species occurs within epithelium of the digestive tubules 

(OIE 2006).  The spore surface of H. nelsoni, as determined by SEM, is covered with 

individual tightly bound ribbons occurring as a single sheet.  This layer is also overlaid 

distally to the aboral pore by a branched fibrous network (Burreson and Reese, 2006).  

The mortalities were found to occur in both adult and juvenile oysters with a prevalence 

of up to 80% and oyster production in Delaware Bay fell from about 7.5 million pounds 

of oyster meat prior to 1957 to less than 100,000 pounds by 1960 (Sindermann and 

Rosenfield 1967).  

 

By 1959, the disease was reported in both Virginia and Maryland waters of Chesapeake 

Bay (Andrews 1966) eventually leading to the identification of spore stages (Couch et al. 

1966), and subsequent identification of the species Minchinia nelsoni (Haskin et al., 

1966), which was later reclassified as Haplosporidium nelsoni (Perkins 1990). The mid-

Atlantic coast of the United States remains the most heavily affected by MSX.  The 

parasiteÕs range spans along the entire Atlantic coast of the US from Maine to Florida.  

 

Two regions outside of the established range of the parasite have been identified to 

sustain infections in populations, the Bras DÕOr lakes, Nova Scotia, Canada (Stephenson 

et al., 2003) and the Gulf of Mexico.  In Canada, the parasite is not found along the 
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Atlantic coast of Nova Scotia, but instead isolated within the unique salt water Bras dÕOr 

lake system on the North Eastern tip of the province.  This water system has a low tidal 

influence and is almost completely landlocked with two flushing sites at the Northern- 

and Southern-most reaches of the system.  It may be possible that the environmental 

conditions in this area have allowed proliferation of the disease, either through 

introduction directly to the lakes, or through progression along the coast via an 

intermediate host occurring in or passing through areas in which the conditions were not 

amenable to disease establishment in the coastal populations of C. virginica.  Isolation of 

H. nelsoni DNA from collections from the Gulf of Mexico has shown the presence of the 

parasite spanning the past five to ten years.  However, there have been no reports of an 

epizootic in this area (Ulrich et al., 2007). 

 

Molecular phylogenetics (Burreson et al., 1997) demonstrated that Haplosporidium 

parasites in endemic Asian populations of the Pacific oyster (Crassostrea gigas) were 

identical to the genetic sequences of Haplosporidium nelsoni isolated from Virginia. This 

supports the hypothesis that the origins of the initial East coast outbreak and the first 

reported case of H. nelsoni in C. virginica were the result of a transfer of infected C. 

gigas from the West coast that had originally come from Asian stocks.  Because of the 

parasiteÕs introduction into a na•ve host, the eastern oyster had no evolutionary defense 

against the pathogen causing it to decimate stocks within environmental conditions that 

were ideal for proliferation.  The spread of the parasite along the western coast of the 

Atlantic may stem from the interplay of several factors, including natural spread of the 

opportunistic parasite among host populations, the possibility of movement of an 

intermediate host throughout the range and movement of infected stocks through 

aquaculture.  

Haplosporidium nelsoni has never been cultured, and its transmission is thought to be 

indirect, as it has never been determined whether or not the life cycle of the parasite 

utilizes an intermediate host(s). Study of naturally infected populations has been the 

source for all information known about the parasite and the disease process in its hosts.  

Infection occurs in the early summer with heavy infection being observed late in the same 

season in areas of repeated epizootics that have been monitored since initially outbreaks 



 15 

along the mid-eastern coast of the US. The rapid proliferation of the parasite within the 

hostÕs tissues occurs over approximately six weeks in many of the lethal cases. Open 

gross inspections show infected and diseased hosts appearing grey, watery, and 

emaciated.  For those individuals in which the infection remains sublethal, impacts on 

metabolism were noted through reductions in clearance rates (Newell, 1985), condition 

index, fecundity (Newell 1985; Barber et al., 1988a) and glycogen content (Barber et al., 

1988b) when compared with resistant individuals. Interestingly, when looking at overall 

energy costs in susceptible oyster populations, those with systemic infections displayed 

evidence of increases in clearance and oxygen consumption rates compared with 

uninfected individuals (Barber et al., 1991a).  For those that survive the initial wave of 

infection, often the environmental temperatures impacted the progression of the parasite, 

with cooler waters slowing proliferation, as well as the metabolism of the host itself.  As 

waters warm the following spring, a second wave of mortality is often noted consisting of 

those individuals whose intensity levels have remained high through the winter in the 

regions of study and surveillance along the Eastern US coast.   

 

1.1.7.2.3 Environmental factors affecting host-parasite interactions 

In areas where mortalities due to the parasite continue to persist, the environmental 

conditions seem to be an important factor impacting both the parasiteÕs success and the 

hostÕs ability to survive.  Salinity is chief among these factors with drought conditions 

causing elevated salinity levels associated with dramatic spikes in disease within 

monitored areas (Barber et al., 1997).  Salinity ranges above 18-22 psu are shown to 

consistently support infection, proliferation, and mortality, but a level of a sustained 

minimum of 15 psu has been shown to support infection and disease.  Drought years have 

a greater impact due to areas of lower salinity undergoing an elevation in salinity levels, 

thus exposing populations normally sheltered by their environment to the conditions in 

which disease is favourable.  Because of this, measures have been put in place to limit 

transfer of oysters from impacted areas to those of lower salinities. In those areas in 

which drought conditions have resulted in spread, it has been found that with the absence 

of drought conditions these populations are able to recover and their progeny survive and 

produce healthy populations (Barber et al., 1997).  This was demonstrated through the 
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1970Õs in both Delaware and Chesapeake Bays during which time wet environmental 

conditions corresponded to a significant recovery of the eastern oyster population that 

had fallen victim to the initial parasite outbreaks in the 1950-1960s. Many of the oyster 

recovery programs have focused on areas with natural salinities of low to moderate 

levels. 

 

1.1.7.2.4 Comparison of MSX and SSO and Diagnostics 

Plasmodia of Haplosporidian costale cannot be distinguished through histological 

analysis from those of the parasite Haplosporidium nelsoni. However, the site of 

sporulation differs with H. nelsoni undergoing sporulation in the epithelium of the 

digestive tubules, while H. costale undergoes synchronous sporulation throughout the 

connective tissues.  The seasonality of the parasites also differs, with the mortalities 

occurring earlier in the season for H. costale.  However, plasmodia of H. costale were 

detected in October in Long Island Sound and Virginia, which challenges the traditional 

knowledge of the parasiteÕs seasonality (Stokes and Burreson 2001; Sunila et al., 2002). 

The co-detection of H. costale and H. nelsoni is facilitated through PCR diagnostics as 

well as in-situ hybridization, which overcomes traditional histological limitations. 

 

1.2 Host Response 

The innate immune systems of molluscan hosts implement two main streams of defense.  

Cellular defenses include phagocytosis, apoptosis, respiratory burst and diapedesis, while 

humoral defenses utilize secreted molecules such as protease inhibitors, lysozymes, 

lectins, aminopeptidases, and antibacterial proteins (Goedken et al., 2005).   

 

1.2.1 Innate Immune Molecules 

Lysozyme is an enzyme utilized in innate immune system responses, acting by catalyzing 

the hydrolysis of 1,4-beta-linkages shared between N-acetylmuramic and N-acetyl-D-

glucosamine residues found in peptidoglycan as well as a similar bond in fungal chitin 

(Jolles, 1996).  As a result, lysozyme is an effective defense against many bacterial 

species, particularly Gram positive groups.  Lysozyme has been identified from in many 

species and is found to occur in secretions such as tears, saliva, plasma, and mucous 
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(Jolles, 1996).  In marine species, lysozyme has been measured mainly in serum, plasma, 

or heamolymph as a measure of circulating enzyme indicative of a proinflammatory 

phagocyte response (Lie et al., 1989; Saurahb and Sahoo, 2008, Fange et al.,1976).  In 

mollusks, lysozyme has been characterized from a number of species (Xue et al., 2010) 

however, its specific action within these species has not been fully characterized, nor has 

its optimal conditions for action (particularly the pH range of activity within these 

systems). 

 

Alkaline phosphatase is an enzyme whose action serves to remove phosphate groups 

from proteins and other molecules including nucleotides (Crofton, 1982).  It is most 

effective in basic environments and has been described from many groups of organisms.  

In bacteria the enzyme is thought to act in acquisition of phosphate groups from 

molecules when phosphate is in low abundance (Sebastien and Ammerman, 2009).  It has 

been proposed that alkaline phosphatase can also act in aiding in the uptake of organic 

molecules by removing phosphate groups that tend to impede uptake by bacteria.  The 

role of alkaline phophatase in immune function is not clearly understood, though in a 

number of organisms and disease interactions it has been noted to be upregulated.  An 

increase in alkaline phophatase is thought to indicate stress or a trigger for an immune 

response (Ross et al., 2000; Iger and Abraham, 1990, 1997).  In mollusks, the release of 

alkaline phophotase in addtion to othe rlytic enzymes has been demonstrated after the 

formation of a phagolysosome in the reponse to microorganism infection (Gestal et al. 

2008; Sokolova, 2009). 

 

Proteases occur naturally in all organisms and act to break down proteins through 

hydrolysis of peptide bonds between amino acids in a polypeptide chain.  There are 

numerous proteases that have been described and classified into four broad groups 

(serine, cysteine, aspartate, and metallo- proteases) (Hartley 1960).  Proteases serve many 

physiological functions from digestion of protein as food to more regulated cascades 

affecting complement, apoptosis, blood clotting and the invertebrate prophenoloxidase 

activation (Morrissey, 2008; Cho et al., 2002).  Proteases can act in breaking specific 

bonds or breaking an entire protein down into its constituent amino acids. Similarly, 
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proteases can detach terminal peptide bonds disrupt the polypeptide chain at an internal 

linkage.  The action of proteases can serve to trigger rapid changes in metabolic and 

immune functions in response to physiological perturbations within an organism. 

 

Additional molecules which have been shown to have a role in host response and immune 

function include flavoenzymes which act as catalysts in a variety of chemical reactions 

(Joosten and vanBerkel, 2007), and transferrin which binds iron molecules and has a role 

in the innate immune system in mucosa impacting iron availability and thus bacterial 

survival (Stafford and Belosevic, 2003). Actin has been found at significant levels in 

Atlantic salmon mucus, which raises a question whether it may have an alternate 

extracellular role in organisms similar to histone (Easy and Ross, 2009).    Actin is a 

42kDa protein that is ubiquitous in all eukaryotic cells and acts as a component of micro- 

and thin filaments utilized in the structure and motility of cells.  Actin plays an important 

role in many cellular functions including cell motility, shape, division, cytokinesis, 

muscle contraction, signaling, and the creation of cell junctions (Pratt et al., 2004a,b). 

Lectins (hemagglutinin) are highly specific sugar binding molecules that serve a variety 

of physiological functions in a wealth of organisms. Their specificity is implicated in 

immune function, recognizing carbohydrates found on the surface of pathogens. In 

mollusks, their immunological roles include non-self recognition, induction of 

phagocytosis and encapsulation anti-bacterial defense and microbe agglutination (Wang 

et al., 2011). C-reactive proteins (CRPs) are found in the blood an act in binding 

phosphocholine on the surface of dying cells and trigger activation of complement.   

Inflammation is associated with a distinct rise in CRPs.  Apolipoprotein A-I is a lipid-

binding protein that assists in the transport of hydrophobic lipids through lymphatic and 

circulatory systems.  Antimicrobial proteins and peptides are a diverse group of peptides 

that constitute a highly conserved defense mechanism in innate immune systems.  They 

can effectively kill bacteria, fungi, enveloped viruses and have been demonstrated to kill 

transformed cancer cells.  Their action is achieved through disruption of membranes, 

cytoplasmic components or metabolic processes.  They can also act as important 

immunomodulatory molecules with the ability to alter host gene expression, impact 
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production of chemokines, modulate adaptive immune cells, encourage wound healing 

and inhibit cytokine production (Hamill et al., 2008). 

 

1.2.2 Evidence of Oyster Host Response to Non-Parasitic Pathogens 

Oyster host response has been studied in several disease systems, lending insight into 

how this bivalve deals with infiltrating pathogens.  Freidman et al. (1999) noted that 

when challenged with Nocardia sp., heat shock proteins were detected in oyster hosts.  

Although the pattern of synthesis (protein production) was found to be similar to control 

animals, overall thermotolerance was reduced in those oysters exposed to nocardiosis.  

Species of Vibrio differ in pathogenicity, but typically young oysters are unable to mount 

a defense against infection, while as oyster hosts age the act of pathogen sequestration 

seems a successful means of controlling infection.  Nottage et al. (1989) identified two 

low molecular weight toxins playing a role in disease progression, a proteinase (40,000 

Da) involved in degradation of connective tissue, as well as a ciliostatic toxin (500-1000 

Da).  Vibrio aestuariamus produces ECPs (extracellular products) with hemocyte 

immunosuppressant activities.  Experimental inoculation of oysters (Ostrea edulis) with 

heat killed M. luteus, V. splendidus, and V. anguillarum displayed an elevation in cDNA 

transcripts of an Interleukin-17 homologue (CgIL-17) in hemocytes, suggestive of an 

early response at the gene expression level toward these pathogens. 

Host species are often quite adept at counteracting effects of shell boring sponges through 

rapid nacre (inner shell surface) application to repair shell damage. However, if this 

repair response is slowed due to other stressors, the sponges can overcome the host and 

cause mortality (Moase et al., 1999).  This problem is of specific concern to the pearl 

oyster industry in that nacre application is diverted to shell repair, thus slowing nacre 

application onto embedded pearl (Moase et al., 1999).  Management can mitigate impact 

of this pest through the use of hanging as opposed to bottom culture of species. 

 

1.2.3 Host Parasite Interactions 

Responses of oysters to parasites are of particular interest due to their impact on 

molluscan hosts compared to other pathogens. Metacestode infections can result in high 

prevalence with every individual in some populations harbouring many (up to several 
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hundred) parasites (Lauckner, 1983, Winstead et al., 2004).  In the presence of such 

heavy parasite burden, the host can suffer from generalized physiological stress-impacted 

growth and reproduction (Sparks, 1985), or may show no distress whatsoever from 

infection (Lauckner et al., 1983). 

The lifecycle of Marteilia spp. is likely to involve an intermediate host with experimental 

studies not providing evidence of direct horizontal transmission.  Audemard et al. (2002) 

used molecular techniques to show M. refringens in ovarian tissues of the copepod, 

Paracartia grani, indicating the potential involvement of this species in the lifecycle.  

However, attempts at producing transmission in the lab were unsuccessful using this 

model.  Infections occurring in C. gigas have been shown to be transient and produce 

little impact on culture populations of this species.  The results of infection in other 

species are initiated by primary cells in the epithelium of the gut or gills, subsequent 

sporont development and sporulation take place in digestive gland epithelium (Bower, 

2006). 

 

With Marteilia sydneyi, similar to what has been found in MSX, seasonality includes a 

point at which low temperatures cause overwintering of parasites within the hostÕs tissues 

and when temperatures rise in the spring, mortalities of these infected individuals follow.  

However, there has not been correlation established between epizootics and fluctuations 

in pH, salinity, and temperature.  Marteiliodes chungmuensis infections have been found 

to reduce overall serum protein concentrations affecting metabolic recovery after 

spawning (Park et al., 2003; Park, 2005). 

Bonamia perspora sporulation causes disruption of the digestive diverticula and 

interestingly, haemocyte infiltration is found to be strongest within those infections with 

uninucleate and binucleate microcells and weakest in individuals that have developed 

plasmodial or sporulating forms through the course of infection (Carnegie et al., 2006). 

Urastoma spp. displayed a preference for oysters compared to other Atlantic Canadian 

molluscan species (Brun et al., 1999), indicating an attraction to mucous secretions in 

oyster gills, most heavily concentrated along the basal food tract.  Despite no specific 

pathology among oyster hosts being noted as numbers of U. cyprinae increase, there is 
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likely to be impact on the overall condition of the oyster. Indeed, U. cyprinae has been 

demonstrated to affect oyster mucus proteolytic activity (Brun et al., 2000).   

 

1.2.3.1 Host Parasite Interactions Ð Cellular Immunity 

The host parasite dynamics of protozoal infections most common in Crassostrea 

virginica are of great interest, especially in further understanding the disease processes 

caused by these pathogens.  Histological examination of MSX infected oysters has noted 

that infiltration through circulatory systems and subsequent proliferation in the digestive 

and connective tissues has a detrimental effect on cellular functions of respiration and 

feeding (Barber et al. 1988b).  Little has been elucidated regarding the cellular actions 

taking place in these tissues during infection however. Fecundity has also been notably 

repressed by infection, but may simply be a byproduct of energy reallocation of host 

reserves to defense mechanisms (Barber et al., 1988).    Barber et al. (1988) also showed 

a decrease in lipid, glycogen, protein and ash content of those oysters carrying systemic 

MSX infections.  

 

With respect to Perkinsus marinus, whose study has been advanced both in vitro and in 

vivo due to culture techniques being available, a more detailed view of cellular interaction 

has been established.  Perkinsus marinus has been shown to effectively utilize the cells 

that have phagocytised the pathogen in order to circulate through the host and establish 

systemic infections.  It is also thought that they are able to produce superoxide dismutase 

and through this action effectively counter the effects of the ROIs (reactive oxygen 

intermediate free radicals) released to kill pathogens during phagocytosis (Ahmed et al., 

2003).  The parasite targets the immune cells of the oyster inhibiting the host response 

due to the destruction of haemocytes impeding defense systems against this and other 

opportunistic invaders.  The parasite is phagocytized by host haemocytes, in which they 

proliferate and spread by infiltrating various tissues through movement of the hostÕs cells 

(Caseres-Martinez et al., 2008). Initial infiltration typically commences within the 

epithelium of the gut (Mackin, 1951), gill, labial palps, or mantle (Chintala et al., 2002).   
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Increased haemocyte activity has been shown to be a determining factor in molluscan 

resistance (Fisher and Newell 1986), with activities typically decreasing in infections 

with P. marinus (LaPeyre and Faisal,1995).  However, this indicator has proved 

somewhat problematic when assessing impact of the pathogen, due to haemocyte 

numbers varying among species and individuals dependent on age, heart rate, bleeding 

technique, environmental temperature and air exposure (Adema et al. 1991, Thompson et 

al., 1978).  Because of this, it is understandable that increased activity in oysters is noted 

with those haemocytes being infected often lysed through the course of disease, therefore 

the observation of increased haemocyte activity may be an artifact of reduced numbers of 

haemocytes found in infected individuals. In contrast, a decrease in circulating 

haemocytes was noted for clams whose cells are diverted toward encapsulation to contain 

the disease (Casas 2002). The host species seems an important factor, with C. gigas 

displaying some resistance to P. marinus. Comparative studies of the two oyster host 

species have not determined clear differences, except that rate of phagocytosis with C. 

virginica is greater during infection than for C. gigas (Gauthier and Vasta, 2002), which 

may be due to temporal activation of oyster defense systems caused by previous exposure 

to the pathogen (Chu, 1988; Ford, 1988; Gaffney and Bushek 1996). This may indicate 

that C. gigas is able to utilize defenses other than phagocytosis and thus block 

proliferation of the parasite, or simply has an internal environment that does not favour 

disease. 

 

Immune responses vary with hosts, typically involving phagocytosis or encapsulation by 

haemocytes and environmental factors are also known to impact disease progression and 

regression by modulating host immune systems and parasite activity (Chu and LaPeyre, 

1993; Anderson, 1996).  Those Perkinsus sp. found in clam and abalone are successfully 

controlled through encapsulation, during which parasites apparently die while embedded 

within the macromolecule formed through non-glycosylated polypeptides secreted by 

surrounding haemocytes (Chagot et al., 1987; Montes et al., 1995; Sagrista et al., 1995; 

McLaughlin and Faisal, 1998).   
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1.2.3.2 Host-Parasite Interaction Ð Humoral Immunity 

Many studies of H. nelsoni have focused on humoral factors in oysters and have reported 

declines in free amino acids (Feng and Canzonier, 1970) as well as total serum protein 

concentrations associated with systemic infections (Ford, 1986). When hemocytes were 

incubated along with H. nelsoni plasmodia pre-treated with several different classes of 

inhibitory proteins, Ford (1988) found increased phagocytosis to be associated with those 

plasmodia that had been treated with carbohydrases, proteases and glycolysis inhibitors.  

This provided evidence of phagocytosis interference by the parasite through surface 

modifications and likely more importantly metabolic production of molecules inhibiting 

phagocytosis by host cells.   

 

The roles of specific humoral factors in the host-parasite system of Perkinsus are still not 

clearly understood.  Host lysozyme and haemolymph agglutination are reduced by the 

presence of certain extracellular products and proteases secreted by the parasite.  In some 

systems, host lysozyme and haemolymph agglutination are reduced by the presence of 

certain of the parasiteÕs extracellular products and proteases, while in other systems 

certain host antiproteolytic factors indicate specified action against the parasiteÕs 

proteases and suggest an important role in defense (Faisal et al., 1998, Oliver et al., 

2000).  However, when investigating several candidates for host defense, lysozyme, 

lectins, and overall serum protein concentrations showed no link to resistance or 

pathology of disease (Chu and LaPeyre, 1989; Chintala et al., 1994).  Polypeptides 

isolated from clam haemocyte (Tapes philippinarum) secretions have shown 

effectiveness in killing P. marinus.  While in vitro studies have shown that P. marinus 

secretes proteases involved in host tissue degradation, the parasite also has the ability to 

suppress toxic oxygen radicals produced by host haemocytes.  Extracellular products of 

perkinsus inhibit haemocyte activity in vitro; additional secretory products also inhibit 

production of superoxide anions by oyster haemocytes, thus modulating respiratory burst 

activity (Garreis et al., 1996, Anderson, 1999).   

 

The impact of Perkinsus spp. on haemolymph lysozyme concentrations are uncertain, 

with some reports showing no difference among infected and uninfected individuals, but 
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seasonal variations with temperature and salinity have been reported (Chu and LaPeyre 

1989, 1993b; Chu et al., 1993).  Decreases in lysozyme activity were reported from 

infected oysters (LaPeyre et al., 1995) and serum treated with P. marinus ECPs (Garreis 

et al., 1996), while Chu and Le Peyre (1993a) reported serum lysozyme activities 

increased in infected oysters. These changes may be attributable to environmental factors, 

although mussel lysozyme had an inhibitory effect on P. marinus growth in vitro, far 

greater than serum lysozyme isolated from C. virginica (Anderson and Beaven 2001).  

However, contributions of other humoral factors cannot be ruled out.   

 

Overall serum protein concentrations have been reported to be slightly lower in P. 

marinus infected oysters though not shown to be significantly different (Chu and 

LaPeyre, 1993; LaPeyre et al.,1995), and some reports have indicted no differences seen 

in oysters (Chu and LaPeyre 1989, 1993). Again, as with lysozyme, there could be a 

number of factors contributing to the makeup of overall protein serum concentrations.  

The increase noted in clams infected with Perkinsus atlanticus could be due to specific 

polypeptides reported by Montes et al. (1996, 1997).   

 

Agglutinins may increase phagocytosis acting as opsonins (Olafsen et al., 1992), with the 

agglutination of non-self particles acting as a precursor to recognition and followed by 

internalization of the material by haemocytes (Chu, 1988).  ECPs have an inhibitory 

effect on oyster haemagglutination titers (Garreis et al., 1996), with serum agglutinin 

levels not dependent in vivo or in vitro on infection intensities.  Chintala (2002) 

concluded no role of agglutinins in oyster (C. virginica) defense against P. marinus, 

while in clams (Ruditapes decassatus) and C. gigas higher levels of agglutinins have 

been demonstrated in infected (with P. olseni and P. marinus, respectively) versus 

uninfected individuals (Ordas et al., 2000;  La Peyre et al., 1995).  

 

Parasite derived proteolytic enzymes serve many roles in infection processes such as 

adhering to host cells (Aliva and Calderon, 1993), penetration and digestion of host 

tissues (Sung and Dresden, 1986; McKerrow, 1987; Knox and Jones, 1990; White et al., 

1996; Berasin et al., 1997; Perkins et al., 1997) and evasion of immune response (Ellis 
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1981; Kamata et al., 1995; Garreis et al., 1996). The release of lytic enzymes to modulate 

response and increase infection intensity has been suggested, but these specific enzymes 

remain uncharacterized (Garreis et al., 1996; LaPeyre, 1996; Anderson, 1996). ECPs and 

proteases reduce motility of haemocyte cells likely triggered by recognition and uptake of 

the parasite. Gauthier and Vasta (2002) demonstrated that oyster haemocytes displayed 

higher affinities toward live rather than fixed cells.  Parasite-derived proteolytic enzymes 

may contribute to necrosis, causing degradation of the extracellular matrix components of 

stroma and basal membranes, further facilitating invasion of host tissues (Villalba et al., 

2004).  Homogenate extracts of plasma from C. virginica exposed to P. marinus cultures 

increased protease secretion, which was not seen to occur in extracts from less 

susceptible species (MacIntyre et al., 2003).   

 

Protease characterization from ECPs of cultured  P. marinus taken from C. virginica and 

M. arenaria showed primarily serine proteases that were found to be stable at high pH 

(LaPeyre et al., 1995, Faisal et al., 1999).  Additionally, high ! -chymotrypsin and low 

trypsin activities were detected in P. marinus cultures.  Serine proteases are involved in 

life cycle development of protozoa and blood cell invasion in fish, their effects can be 

lethal (Aeromonas hydraphila), which would lend credence to why some P. marinus 

secretion products (serine class) affect several immune parameters of oysters (Garreis et 

al., 1996) and degrade certain host serum proteins (Oliver et al., 1999).  P. marinus serine 

proteases suppress vibriocidal actions of oyster haemocytes, making hosts more 

susceptible to secondary infections (Tall et al., 1999).  Lack of (or undetected production 

of) serine proteases by P. olseni and P. atlanticus could support the theory of lower 

virulence of these found in T. decustatus than that of P. marinus in its host C. virginica 

(Casas, 2002).  

 

 Antiproteases are found in animal serum including mollusk species, and can act in 

defending host cells against protozoal entry.  The serine protease inhibitor family (serpin 

superfamily) is involved in insect defense against pathogen proteases.  P. marinus 

infected oysters have antiproteases with specific activity against parasite ECPs (Faisal et 

al., 1998; Oliveret al., 1999a,b).  Disease intensity was found to negatively correlate with 
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protease inhibitory activity (Oliver et al., 2000), with highest concentrations observed just 

before parasite elimination. This suggests a role for oyster antiproteases in protecting 

hemaglutinins from degradation by parasite proteases (Romestead et al., 2002).  C. gigas 

which is less susceptible to the parasite displayed much higher inhibitory protease 

activity then that of C. virginica (Faisal et al., 1999), while in clams, production of 

specific proteins by haemocytes was found in a mounted defense response against the 

invading parasite, Perkinsus atlanticus (Montes et al., 1995, 1996, 1997).   

 

Parasite-derived acid phosphatase plays a role in host immune response (Volety and Chu, 

1997) as an enzyme that may alter bivalve cellular defense activity by disruption of 

phosphoproteins and inhibition of superoxide anion production.  Living P. marinus show 

a negative effect on haemocyte respiratory burst activity (measured by 

chemiluminescence) and can actively suppress active oxygen radicals, thus interfering 

with host oxygen dependent killing mechanisms.  Two iron-containing superoxide 

dismutases (Fe-SOD) and antioxidative enzymes have been described and characterized 

from cultured P. marinus (Wright et al., 2002, Ahmed et al., 2003, Schott et al., 2003).  

In vitro experimentation showed P. marinus caused decreases of phenoloxidase activity 

in haemolymph of C. virginica and non-susceptible mussel species G. demissa (Deaton 

and Jordan, 2002).  The role of phenoloxidase in the insect arthropod immune response is 

well documented; however its role is currently unknown within molluscan haemocyte 

defenses.  Continued investigation of lipid metabolism of Perkinsus spp. (Soudant and 

Chu, 2001, Lund and Chu, 2002, Chu et al., 2003) and should provide additional insight 

into host parasite interactions of this relationship.    

 

1.3 Aims of Present Research 

The research undertaken in this thesis set out to build on the foundational work that has 

followed from the initial characterization of Haplosporidium nelsoni in the Eastern 

United States. With the appearance of H. nelsoni in Canadian waters, there was an 

opportunity to investigate this parasite within a new geographically distinct environment 

and look for factors that may lend insight into how the parasite spreads and behaves 

within this setting. Through establishment of the present work in assessing the population 



 27 

at risk in the Bras dÕOr lakes, differences in disease expression across localities in the 

lakes were identified.  Despite the well established limitations of studying this parasite 

without the ability to culture or even isolate the parasite from its host for study, an 

approach targeting a comparison of overall protein profiles of infected and uninfected 

hosts was determined as a starting point for investigation. Investigating the whole 

proteome of infected individuals in comparison with uninfected oysters would highlight 

major changes in protein expression for investigation in relation to disease status.  

Proteins of interest would warrant further investigation as playing a potential role in the 

host-parasite interaction.  Further investigation led to experimental field infections of 

oysters in Virginia waters to look at protein profiles of individual oyster responses to 

disease exposure over time.  The experimental design involved collection of na•ve oysters 

and, after the collecion of a small heamolymph sample from each individual, these 

oysters were transplanted to a disease impacted area of the York River system of 

Virginia.  Subsequently, additional heamolymph samples were collected over time and 

their profiles compare with the initial samples taken from each invidual.  At the final 

sample time, infection intensity was determined for each individual and oysters were 

grouped based on these intensities for proteomic comparison. The work presented offers 

new insight into the actions of disease within this host parasite system and how that may 

differ from simply becoming infected.  Specific target proteins have been identified and 

correlated to disease progression over time.  Finally, this study offers a new avenue of 

research to continue with in order help elucidate more clearly the actions of this 

biologically elusive parasite.   
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Table 1. Summary of viral diseases impacting oyster species. 
 

Virus Hosts Distribution  Impact Reference 

Oyster velar virus  Crassostrea. gigas Washington State An icosahedral DNA virus found in the velar 
epithelium of larval stages, impacting hatchery yield 

Elston 1979. 

Hemocytic infection 
virus  

C. angulata and C. gigas France and Spain Icosahedral DNA virus Renault and Novoa 
2004 

Gill disease C. angulata and C. gigas 
some signs of clinical 
expression in co-habitating 
Ostrea. edulis 

France, Portugal, 
Spain and Great 
Britain 

Produces yellow spotting on the gills and is 
associated with gill erosion leading to high levels of 
mortality. 

Alderman and Gras 
1969; Farley 1978 

Papova-like virus Pinctada maxima  Australia Found as virus like particles in hosts, displays some 
similarity to viruses found in C. gigas and the clam 
species Mya arenaria 

Norton, Shepherd and  
Prior 1993 

Akoya virus Pinctada fucata, P. 
martensii, P. margaritifera, 
C. gigas, and the scallop 
species Chlamys nobilis 

Japan, China and 
French Polynesia 

Subject of some debate relating to the proper 
identification and overall pathogenicity. 

Comps et al.  1999 ; 
Miyazaki et al., 1999 ; 
Renault and Novoa 
2004 

Herpes type virus C. virginica, C. gigas, O. 
edulis, O. angasi, O. 
chilensis 

Maine, NY, New 
Zealand, France, 
California, Mexico 
and Australia 

Thought to have resulted from interspecies 
transmission, typically found to occur in conjunction 
with other stressors including the presence of other 
disease agents, poor husbandry and crowding in 
culture. 

Comps and Cochennec 
1993; Arzul et al 2001 
a and b; Davison et al. 
2005. 

Viral gametocytic 
hypertrophy, caused 
by a papilloma type 
virus 

C. virginica, similar 
unconfirmed reports are 
noted from several other 
species.    
 

Atlantic Canada, the 
Eastern US, North 
Eastern Florida coast, 
with possible reports 
on the West coast of 
the US, Korea and 
Japan 

Disrupts gametes and epithelial gametogenic tissue 
caused by replication of the virus in host cell nuclei. 
Typically found at low intensities but high 
prevalence. overall impact on fecundity and health is 
not of great concern, light haemocytic infiltration is 
documented as a mounted host response 

McGladdery et al. 
1993; McGladdery et al 
1999; Choi et al 2004; 
Farley 1985; Garcia et 
al 2005; Winstead et al. 
2004 
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Table 2.  Summary of bacterial diseases impacting oyster species. 
 

Bacteria Hosts Distribution  Impact Reference 

Nocardiosis, 
Actinomycete bacteria, 
Nocardia crassostreae 

Crassostrea gigas 
and Ostrea edulis 

North American 
West Coast as 
well as Japan 

Causes infection year round with associated mortalities noted in 
the late summer months. Characterized by yellow and green 
pustules on tissues of the mantle, gill, adductor muscle and 
heart.  

Freidman et al 1998 

Vibriosis, by numerous 
species of the genus 
Vibrio  

C. virginica, O 
edulis, C. gigas, C. 
sikamea, O. 
conchaphila and 
other cultured 
juvenile mollusks. 

Eastern US as 
well as 
California, 
Washington State 
and Japan 

Impacts bivalve hatchery and nursery practices through 
colonization of the peripheral valve margin and spreads through 
mantle and soft tissues of larval and juvenile stages. Causes 
widespread necrosis, release of toxins and in many cases death. 
Presumptive diagnosis achieved through isolation of gram-
negative rods from sample. 

Elston et al 2008 

Rickettsia- and 
Chlamydia-like 

All oyster species 
as well as a plethora 
of other marine 
mollusks 

 Occurs as microcolonies in the gill and digestive gland 
epithelia, ubiquitous with light intensity infections and no 
associated pathology, except for one report from the French 
coast in the 1990s of Chlamydia being detrimental to stocks. 

Renault and Cochennec 
1995; Comps 1983 

Juvenile oyster disease, 
! -Proteobacteria, 
Roseovarius 
crassostreae 

C. virginica North Atlantic 
coast of the US 

Syndrome causing morbidity and mortality, peaking in high 
temperatures of July and August. 

Barber et al 1996 ; 
Boardman et al 2008 ; 
Maloy et al 2007 

Cytophaga spp. all cultured species ubiquitous Causes hinge ligament disease, characterized by the break down 
of the ligament impacting both respiration and feeding. 
Secondary infections often occur when disease has set in, 
elevated temperatures display enhanced pathogenicity. 

Dungan and Elston 
1988; Dungan et al 1989 
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Table 3. Summary of diseases of unknown cause impacting oyster species. 

 
Disease Host Distribution  Impact Reference 

Digestive tract impaction Larval Crassostrea gigas Washington and Australia Dermocystidium-like relation of 
protists. 

Handlinger 1999 

Hemocytic neoplasia C. virginica, C. gigas, C. 
iredalei, Ostrea edulis, O. 
conchaphila, Saccostrea 
commercialis, Tiostrea 
chilensis, does not occur in 
oysters in Canadian waters but 
is found in Canadian mussel 
and clam hosts 

Ubiquitous Associated with a low prevalence, 
with pockets of higher prevalence 
in a few distinct populations. 
Typified by the appearance of 
neoplastic hemocytes in the soft 
tissues, thus impacting normal 
hemocyte function 

Balouet et al 1986; 
Harshbarger et al 1977; 
Barber 2004 

Malpeque Disease 

 

C. virginica Atlantic Canada High level mortalities of Eastern 
oyster populations in Atlantic 
Canada. Pockets of disease still 
exist within populations of 
resistant oysters. 

Needler and Logie 
1947; Drinnan and 
Medcof 1961 
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Table 4. Summary of pests and commensal organisms impacting oyster species. 
 

Pest/Commensal Host Distribution  Impact Reference 

Bivalve inhabiting hydroids, 
cnidarians comprising 
numerous species of the 
genera Eugymnanthea and 
Eutima 

Crassostrea gigas, C. 
rhizophorae, C. virginica, 
and some species of Ostrea. 

Japan, the 
Mediterranean Sea, 
Puerto Rico and 
Florida 

Attachment occurs on the soft tissues of the 
mantle cavity. 

Kubota 2000; 
Winstead et al 2004 

Shell boring polycheates, 
spionid species of Polydora as 
well as species of Boccardia 

C. virginica, C. gigas, O. 
edulis, Saccostrea glomerata 
and other bivalve species 
including mussels, scallops 
and abalone 

Global distribution, 
with individual 
species displaying 
range limitations 

Tend to be innocuous with the animal burrowing 
only into the shell surface, however, in Eastern 
and Southern North America P. websteri and P. 
ligni in C. virginica cause burrows that continue 
down through the shell resulting in blisters and 
abscesses in the host adductor muscle, greatly 
impacting marketability of these individuals 

Bower, 2004 
 

Shell boring sponges, Cliona C. virginica, C. gigas, O 
edulis, Pinctada maxima and 
a variety of other oyster and 
bivalve species (including 
scallops and mussels) 

Worldwide 
distribution, with 
specific species of 
limited range 

Burrow through the periostracum and can form 
a network of tunnels. Can result in penetration 
through to the conchiolin layer to gain access to 
the inner host surface 

Bower, 2004 

Boonea spp. and Odostomia 
spp from the gastropod family 
Pyramidellidae 

C. virginica and O. edulis as 
well as many mussel, clam, 
cockle and scallop species. 

Ubiquitous with most 
species occurring 
within the waters of 
the North Atlantic 
Ocean. 

Snails attach close to the mantle edge, and then 
use their stylet and proboscis to penetrate the 
soft tissue and feed off oyster tissue fluids. 
Found to transmit Perkinsus marinus in 
Crassostrea virginica. 

Bower 2004; White 
et al 1987 

Tubellarian Urastoma 
cyprinae (commensal 
organism) 

Crassostrea virginica  Atlantic Canada Reported from the gills of bivalves, inducing 
pathology in the gill tissues of the mussel 
Mytilus galloprovincialis, this response has not 
been described in oysters. Proposed as a 
commensal organism in C. virginica. Evidence 
of altered mucoid proteolytic activity (Brun 
2000). 

Robledo 1994; 
McGladdery 
1992,1993; Bower 
1994; Burt and 
Drinnan 1968; Brun 
et al 2000 
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Table 5. Summary of parasitic diseases impacting oyster species. 
 

Parasite Host Distribution  Impact Reference 

Echinocephalus 
crassostreai 

Crassostrea gigas, C. 
virginica, abalone and 
some sea urchins 

Hong Kong, China 
and Louisiana 

Occurs when second and third larval stages of Echinocephalus 
crassostreai encyst in the gonad, resulting in limited associated 
pathology in the bivalve host, but if ingested by humans, can cause 
gastric or other forms of granulomatous cysts. 
 

Cheng 1978; 
Bower 2004 

Unidentified 
metacestode parasite 
species of 
Tylocephalum 

C. virginica ,C. gigas, 
C. madrasensis, 
Saccostrea glomerata, 
Striostrea mytiloides, 
Pinctada sp., scallops, 
clams 

Tropical and 
subtropical waters in 
the Gulf of Mexico, 
Hawaii, Japan, 
Taiwan and India 

Oysters and other plelecypods serve as the primary intermediate 
host, Molluscivourous gastropods and some fish and crustaceous 
species serve as the secondary intermediate or paratenic hosts, 
while the definitive hosts of all representative species are thought 
to be elasmobranches. 

Laukner 1983; 
Bower 2004 

Mytilicola intestinalis, 
red worm disease, 
parasitic copepod 
 

Ostrea edulis and C. 
gigas 

European waters Will not readily infect oyster species in the presence of mussels. Cheng 1967 

Oyster egg disease, 
undescribed 
protozoan (possibly 
microspora) 
 

C. gigas, C. echinata, 
O. edulis, and 
Saccostrea 
commercialis  

California, Japan, 
Korea, Australia, and 
France 

Typically found at low intensities, may utilize vertical transmission 
occurring within the cytoplasm of mature oystersÕ ova, induces 
both haemocyte infiltration and necrosis. 

Bower 2004 

Apicomplexan 
parasites 

O. chilensis New Zealand Zoites associated with infection with the parasite Bonamia 
exitiosia, possibly increasing sensitivity through occupation and 
destruction of haemocytes, disrupting connective tissues and 
utilizing host glycogen reserves.   

Hine 2002 

Unidentified species 
of Bonamia parasites 

O. angasi, O. chilensis, 
O. puelchana, and C. 
ariakensis 

 Experimental trials conducted in Bonamia sp. from C. ariakensis 
indicate the role that low salinity (below 30psu) may play in 
limiting the disease   
 

Audemard 
2005, 2008 a, b 

Unidentified 
protistan parasite 

P. maxima Western Australia Sporozoans, thraustochytridea, ciliates in digestive gland epithelia, 
as well as intracellular ciliates in the epithelium of the digestive 
gland 
 

Bower 2004 

Unidentified 
protistan parasite 

P. maxima Western Australia Sporozoans, thraustochytridea, ciliates in digestive gland epithelia, 
as well as intracellular ciliates in the epithelium of the digestive 
gland 
 
 

Bower 2004 
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Parasite Host Distribution  Impact Reference 

Microsporidosis Dredge oyster New Zealand Oval cysts in the connective tissues surrounding the gut and which 
contain numerous spores 

Jones 1981 

Gregarine parasites, 
Nematopsis 
ostrearum, N. 
prytherchi, and N. 
legeri 

Not only oysters but 
many marine bivalves 
including mussels, 
clams, cockles and 
scallops 

Occur ubiquitously 
with each species 
having defined 
distributions 

Gymnospores and oocytes or naked sporozoites occur in 
phagocytes and subsequently move into connective tissues of the 
organs.  The initial observation in the gills and an associated focal 
inflammatory response often noted as being benign.  Completion of 
the lifecycle does not include multiplication in the bivalve host but 
instead within final arthropod (crab) hosts.  

Bower 2004 

Gill trichodinids 
(Trichdina spp.) 

C. gigas, C. angulata, 
along with clams, 
cockles and scallops 

Europe the Eastern 
US and Pacific rim 

Occur at low intensities attaching to the mantle, labial palps, and 
gill. 

Bower 1994 

Marteiliosis (aber 
disease) also referred 
to as digestive gland 
disease, caused by 
Marteilia refringens 
(Phylum 
Paramyxea). 

O. edulis, Mytilus 
edulis, Cardium edule, 
Crassostrea virginica, 
C. gigas, O. chilensis, 
O. angasi, O. 
puelchana 

Atlantic Europe 
including southern 
Britain to Portugal, 
Morocco, Greece, 
Florida, Persian 
Gulf, and Australia 
 

Associated with serious impacts on the European culture industry 
of O. edulis since 1968. Results of infection unpredictable, some 
oysters can be infected without causing disease. 

Berthe et al 
2004 

Marteilia sydneyi,  
QX disease 

Saccostrea glomerata, 
Striostrea mytiloides, 
Saccostrea forskali and 
similar impacts in giant 
clams 

Australia Exposure time is thought to be relatively short about 2 weeks, after 
which warm temperatures favour parasite proliferation. 

Lester 1986; 
Anderson et al. 
1994; Wesche 
1995; Adlard  
& Ernst 1996 

Marteilia -like 
parasite 

Ostrea angasi Australia Similar to the paramyxean protists of France and Australia, has 
been found on two occasions at very low prevalences 

Heasman et al 
2004 

Marteiliodes 
chungmuensis 
(phylum Paramyxea) 

C. gigas, C. nippona 
(after transplantation), 
C. echinata, and manila 
clams 
 
 
 
 
 

Korea, Japan and 
Australia  

Infected individuals exhibit abnormal egg masses with nodular 
appearance. 

Itoh 2002 

Marteiliodes 
chungmuensis 
(phylum Paramyxea) 

C. gigas, C. nippona 
(after transplantation), 
C. echinata, and manila 
clams 
 
 
 
 

Korea, Japan and 
Australia  

Infected individuals exhibit abnormal egg masses with nodular 
appearance. 

Itoh 2002 
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Parasite Host Distribution  Impact Reference 

Marteiliodes 
branchialis 

Saccostrea 
commercialis 

Australia Presenting as focal lesions on gill lamellae. Anderson, 1992 

Bonamia exitiosa Ostrea chilensis New Zealand, Chile, 
Australia, North 
Carolina and 
Argentina 

Intrahaemocytic protozoan parasite, infections quickly become 
systemic and are associated with high prevalences in austral 
Autumn.  Susceptibility is thought to increase with environmental 
stressors including extreme temperatures, salinity, starvation, 
handling or concurrent heavy infection with apicomplexans.  
Studies of tank cohabitation indicate spread of parasite from 
infected individuals to neighbouring uninfected oysters 

Berthe & Hine 
2003 ; Hine 
2002 ; Hine et 
al 2002 

Bonamia roughlyi Saccostrea glomerata Australia Systemic intracellular infections of haemocytes with the presence 
of focal abscesses in gill, connective and gonadal tissues as well as 
along the digestive tract. Disease process associated with low 
temperatures and high salinities 

Mackin 1959; 
Smith et al 
2000 

Bonamia perspora Ostreola questris North Carolina Single representative species of Bonamia that produces spores 
similar to those found in the Haplosporidians, typically low 
prevalences 

Carnegie et al 
2006 

Perkinsosis, P. 
marinus, P. olseni, P. 
quqwadi, P. 
cheasepeaki, P. 
andrewsi and P. 
mediterraneus 

Oysters and other 
bivalves, mussels show 
resistance to infection 

Atlantic Coast of 
USA, Pacific Coast, 
Hawaii, Australia,  
and Mediterranean 

Cause of mass mortality of C. virginica and severly impacted 
oyster culture in the eastern US. Causes systemic infections, with 
connective tissues harbouring trophozoites, mature trophozoites 
and tomont stages of the parasite. Ability to culture in the lab and 
direct transmission have provided experimental study of the 
activity and disease process of the parasites. 

Vilallba et al 
2004 

Haplosporidium 
armoricana 

O. edulis and O. angasi  
imported Olympia 
oysters (O. 
conchaphila) 

France, Spain, and 
the Netherlands, 
Oregan 

Spore masses occur in the connective tissues. Within an established 
culture setting the disease occurs at very low prevalence (1%) but 
when oysters from an unexposed population are introduced they 
are greatly impacted by the parasite 

Bougrier et al. 
1986; Azevedo 
1999 

Haplosporidians Hatcheries of the pearl 
oyster P. maxima 

Australia Those harbouring infection were destroyed so impact of the 
parasite and strict identification of species is unknown.  The 
parasite was noted to occur in the connective tissue of the digestive 
gland of those individuals identified as infected 

Jones and 
Creeper 2006; 
Hine and 
Thorne 1998 
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Parasite Host Distribution  Impact Reference 

Haplosporidium sp. Saccostrea cuccullata Australia Epizootics reaching 3-27% prevalence in the 
northeast.  Infections were oftentimes heavy 
with plasmodia and sporulation taking place in 
the connective tissue, very little defensive 
response noted through histology (lack of 
haemocyte infiltration) but an abundance of 
brown cells were noted in these heavy infections 

Hine and Thorne 
2000, 2002 

Haplosporidium costale, SSO 
 

C. virginica Long Island Sound, 
New York to Cape 
Charles, Virginia, 
Also along the 
southern gulf of Saint 
Lawrence, the 
Atlantic coast, and 
within the Bras DÕOrs 
lakes in Nova Scotia 

Within its range along the US coast, it can be 
associated with seasonal mortality in late spring 
corresponding to the sporulation of the parasite 
(Couch and Rosenfield 1968, Andrews and 
Castagna 1978, Andrews 1984).  The mode of 
transmission for H. costale is unknown and life 
cycle details including the presence or absence 
of intermediate host(s) is also unknown.  
Management of disease is sometimes facilitated 
through movement of stock to areas of low 
salinity where the disease process is impeded.   

Couch & 
Rosenfield 1968; 
Andrews & 
Castagna 1978; 
Andrews 1984; 
Burreson & Ford 
2004 

Haplosporidium nelsoni, MSX Crassostrea virginica,  
Crassostrea gigas, possibly  
Ostrea conchaphila 

Along the Eastern 
coast of the US from 
Florida to Maine. In 
the Bras dÕOr lakes 
Cape Breton Canada. 
Some reports from 
California, 
Washington, Oregon, 
British Columbia, 
France, Korea 

Epizootics in localities in which disease is 
established reduce stocks by 90-95% Life cycle 
of the parasite is unknown,  direct transmission 
has not been demonstrated.  Plasmodia can be 
found systemically or focally within host 
tissues.  Sporulation is sporadic in adults but 
often observed in juveniles. In the eastern 
United States high disease pressure in the spring 
follow mild winter temperatures and infection is 
limited by low salinity. 

Andrews & Wood 
1967; Ford & 
Haskin 1982; Chun 
1972; Kern 1976; 
Kang 1980; Renault 
et al 2000; 
Freidman et al 
1991; Freidman 
1996; Mix & 
Sprague 1974; 
Stephenson et al 
2003; Barber et al 
1991; Burreson 
1994; Burreson & 
Ford 2004 
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Chapter 2 

Comparison of Haplosporidium nelsoni infections of Crassostrea virginica across 

three localities in the Bras dÕOr Lakes, Cape Breton, Nova Scotia. 
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2.1 Abstract 

The unique environmental system of the Bras dÕOr Lakes, Cape Breton, Nova Scotia 

Canada saw the appearance of the devastating pathogenic parasite, Haplosporidium 

nelsoni, within populations of the eastern oyster (Crassostrea virginica) in 2002 

(Stephenson et al., 2003).  Previously, this parasite had not been seen north of Maine, 

USA.  The interrupted geographical progression of H. nelsoni northward along the 

western Atlantic coast along with the lack of evidence of spread of the disease outside of 

Cape Breton, suggests unique features amenable to disease expression within the Bras 

dÕOr ecosystem.  In 2005, sampling at three localities in the lakes set out to clarify the 

population at risk, as well as detect any low levels of pathogen in areas not exhibiting 

large scale mortalities at that time.  The aim was to understand environmental and 

biological parameters for disease expression in the most Northerly reaches of the 

geographical range of H. nelsoni.  The sampling sites included a population where MSX 

had been previously observed (Nyanza Bay), a site with no previous history of infection 

but adjacent to infected populations (East Bay) and a site at a remote location in the Bras 

dÕOr Lakes where MSX had not previously been seen. Prevalences were 50% in Nyanza 

Bay, 30.7% in East Bay, and 28% in LyncheÕs River by PCR analysis. High prevalence 

indicated continued spread to areas previously determined to be free of the pathogen.  

Interestingly, histological analysis resulted in prevalences of 30% in Nyanza Bay, 23% in 

East Bay and 0% in LyncheÕs River.  Intensities of infection at each OIE classified level 

were found, with sporulation taking place within two adult oysters collected from the 

index outbreak locality (Nyanza Bay). Prevalence differences seen in the two screening 

methods at one particular locality (LyncheÕs River) suggest the presence of H. nelsoni in 

this population without evidence of the development of active infections. The lack of 

histological evidence of MSX in LyncheÕs River may be due to population or 

environmental differences at this site relative to the other sampling locations 

 

 

 

 



61 

2.2 Introduction 

The appearance of the protozoan parasite Haplosporodium nelsoni within the Eastern 

oyster, Crassostrea virginica, in the Bras dÕOr Lakes in Cape Breton, Nova Scotia, 

Canada gives a unique opportunity to study the progression of disease within a newly 

infected population in a oceanic environment largely separated from the more typical 

coastal influences occurring in much of the parasiteÕs range due to its shelter from the 

coastline.   

Haplosporidium nelsoni is a protozoan parasite that infects several oyster species but is 

most detrimental in the eastern oyster, Crassostrea virginica, along the western seaboard 

of the Atlantic Ocean.  It has continuously spread both northerly and southerly along this 

coast from its original locale in the Delaware and Chesapeake Bays reaching from 

Florida to Maine.  This study set out to assess the prevalence of the parasite at several 

localities in the Bras dÕOr Lakes and determine if low levels of disease existed in all areas 

in which the oyster hosts were found.  This assessment utilized the two diagnostic 

methods available to identify and quantify infections with H. nelsoni within host tissues 

and allowed for comparison of these methods within the context of this new disease 

landscape.  It also served to identify the population at risk and areas of disease that could 

be used to study disease criteria and extent of impact this parasite had in the region. 

The eastern oyster, Crassostrea virginica, is an endemic species within the Bras dÕOr 

lakes with an important ecological role within this environment. The overall production 

of the eastern oyster in Canada is concentrated within the eastern Maritime Provinces 

with western coastlines relying mostly upon the production of the Pacific oyster 
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(Crassostrea gigas).  PEI has within the last twenty years been the leader in oyster 

production and export, but in recent years NB aquaculture has grown and has been 

producing choice export product as well (ACOA/DFO).  NS oyster fishery is localized, 

due to tidal and environmental conditions, to certain sheltered coastline areas that allow 

for culture to occur.  Within NS, a major area of culture has traditionally been within the 

Bras dÕOr Lakes and their unique environmental landscape with low tidal pressures along 

with its typically warmer seasonal influences and shallow coastlines. Declines have 

steadily occurred within the Bras dÕOr Lakes due to a number of factors and most 

recently can be attributed largely to disease and mortality caused by MSX. Large scale 

mortalities were first reported in 2002 by farmers who reported declines in stocks of over 

95%.  Testing was initiated and the disease agent was identified as Haplosporidium 

nelsoni also referred to as MSX (Stephenson 2003 et al.).  The identification of this 

devastating parasite was the first report of an outbreak in Canadian waters.  The parasite, 

despite its spread into northeastern US water systems, had not been noted through regular 

screening in Canadian oyster populations in Nova Scotia.  Further testing confirmed that 

the parasite was contained within the lakes themselves and had not progressed along the 

Atlantic coastline of Nova Scotia (Stephenson 2003 et al.).  The arrival of the parasite in 

a somewhat isolated water system has led debate as to the origin of its establishment.  It 

also provides a unique opportunity to look at spread and impact within this system in 

order to gain insight about the disease.  Regular screening was initiated after the index 

outbreak by the Department of Fisheries and Oceans (DFO) as well as mortality and 

impact studies by the Nova Scotia Department of Aquaculture and Fisheries.  The 

unknown potential for the continued spread of this parasitic disease to other areas of 
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oyster culture in the Eastern Atlantic Provinces is of great concern to industry.  

Assessment of the disease within the Bras dÕOr Lakes will lend insight into this parasite 

and disease impacts in its northernmost range.   

In the fall of 2005, sampling was carried out in order to determine populations that may 

be harbouring infections at very low prevalences, which may be missed by standard 

screening methodologies. A typical sample used for screening includes sampling 60 

oysters that if they are all negative provides one with 95% confidence that the prevalence 

in the population is less than 5%.  However, sampling 300 oysters brings this 95% 

confidence to 1%, assuming 100% specificity and sensitivity of the diagnostic methods 

used.  This was thought to provide insight into how the disease was spreading and also 

determine if there existed certain populations within the lakes who were able to maintain 

low levels of infection due to site specific environmental or biological influences. Two 

diagnostic methodologies, PCR and histology were used to determine prevalence at three 

sample sites in the lakes. Both methods are routinely used in assessing MSX infections.  

Molecular diagnosis using PCR acts to amplify a specific sequence in the parasiteÕs 

genome.  A positive PCR result indicates that the parasite was present within the tissues 

sampled. It does not, however, indicate a live parasite because parasite DNA could also 

be amplified from individual plasmodia that are dead or killed during the course of an 

immune response but still present in tissues or simply plasmodia within the water column 

at the time of sampling.  A negative PCR result indicates no evidence of the parasite 

within the small portion of tissue used for analysis, but does not disprove the presence of 

the parasite elsewhere in the tissues and therefore is regarded as a tentative indication of 

the absence of infection.  Microscopic diagnosis using histology allows for the 



 64 

observation of the parasite in tissues sampled and any associated pathology if active 

infections are present.  A positive histological identification can better determine if the 

parasite is active within the tissues while a negative result, similar to PCR negatives, may 

only indicate that plasmodia are not visible within the tissue section studied. The 

sampling localities were chosen according to previous screening information available at 

the time of collection, with Nyanza Bay having previously been identified as an 

established area of disease, East Bay having been screened in previous years with a single 

positive year but no associated mass mortality reported, and LyncheÕs River which had 

not been previously monitored.   

2.3 Materials and Methods 

2.3.1 Collection 

Sampling took place in the fall of 2005 at three localities within the Bras dÕOr Lakes, 

Nyanza Bay (N46¼ 02.270Õ W060 ¼53.240Õ, depth: 1m, 9.5 ¼C, 11.0 psu), LyncheÕs River 

(N45 ¼39.519Õ W060 ¼50.239Õ, depth 1m, 10 ¼C, 19.1 psu)  and East Bay (N46 ¼ 00.962Õ 

W060 ¼ 23.453Õ, depth 1m, 9.7 ¼ C, 12.7psu) (Figure 1).  Temperature and salinity were 

measured at each locality using an electronic sensor.  Sampling was done through hand 

picking while SCUBA diving, only oysters of marketable size (76 mm) and above were 

collected. Sample sizes were determined with the intent of capturing very low 

prevalences by screening higher numbers of individuals at sites with no or little prior 

evidence of disease, however in the case of LyncheÕs River this was not possible due to a 

depletion of stock in this area as a result of recent overfishing. Sample sizes at each 

locality differed with n=120 collected from Nyanza Bay (historically positive site), n=58 

collected from LyncheÕs River (no previous infection data), and n=300 from East Bay 
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(historically negative with a single positive result from screening carried out in 2003 by 

the federal Department of Fisheries and Oceans (DFO) and subsequent negative results 

from screening in 2004).  

2.3.2 Oyster Processing  

Individual oysters were washed free of fouling organisms upon collection, numbered, and 

the length and width of each measured and recorded.  Using a shucking knife sterilized 

by submersion in 95% ethanol and subsequent flaming, oysters were shucked and their 

tissues removed from the shell onto a sterile bench covering.  Sterilized forceps and 

scalpel were used to isolate three cross sections of mantle gill and digestive gland in 

succession, with the first section being placed in a labeled cassette and then into 

DavidsonÕs fixative for histology; the second section being placed in a sterile 1.5 ml 

microcentrifuge tube containing 95% ethanol for molecular diagnostics; and the third 

section placed in a sterile 1.5 ml microcentrifuge tube in ice for biochemical analysis and 

then transferred to -80¡C storage to avoid protein degradation.  Remaining tissues were 

placed in sterile whirlpacks and stored on ice, and subsequently frozen at -80¡C to 

preserve the remainder of each oyster.   

2.3.3 PCR Diagnostics  

DNA was extracted from tissue samples collected and stored in ethanol using a Qiagen 

DNeasyª tissue extraction kit using the manufacturerÕs protocol.  Total genomic DNA 

concentration was determined using a GeneQuant Pro spectrophotometer (Fisher) read at 

260 nm and additionally measured ratios at 260/230 and 260/280 to ensure sample purity. 

Template DNA was added to a PCR reaction mixture containing 25 µl AmpliTaq Gold 

PCR Master Mix (AmpliTaq Gold DNA Polymerase 0.05 U/µl, GeneAmp PCR Gold 
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Buffer, (30 mM Tris/HCL, pH 8.05, 100 mM KCl) dNTP, 400 µm each, MgCl2 5 mM), 

2.5 µl (1.0 µM) of each forward and reverse primer (OIE 2006, MSX-A (5Õ-

GCATTAGGTTTCAGACC-3Õ) and MSX-B (5Õ-ATGTGTTGGTGACGCTA-ACCG-3Õ)), 10 

µl (500 ng) Template DNA, and 15 µl molecular biology grade water.  This mixture was 

then subjected to a temperature cycling protocol of initial denaturation of 94¡C for 4 min, 

35 cycles of 94¡C for 30 sec, 59¡C for 30 sec and 72¡C for 1.5 min, and final extension at 

72¡C for 5 min (as per OIE diagnostic protocol for the detection of H. nelsoni) using a 

TECHNE TC-412 thermocycler (Fisher). Amplified DNA was electrophoresed on a 1% 

agarose gel containing 10 µl ethidium bromide adjacent to a molecular weight standard 

along with positive and negative controls and subsequently viewed under UV light using 

a Alpha Innotech imager (Fisher Scientific).  Images were taken for each gel and 

annotated with sample numbers and amplicons of appropriate size (500 bp) compiled as 

positive diagnostic results for each sampling locality group. 

2.3.4 Histology  

Paraffin embedded blocks were prepared from tissues in DavidsonÕs fixative and sections 

prepared according to the procedure as laid out in the OIE Manual for Diagnostic Tests 

for Aquatic Animals (2003) by the Nova Scotia Department of Aquaculture and Fisheries 

(NSDAF) in Truro, NS.  Two-3 µm sections were stained with hematoxylin and eosin 

and read both at NSDAF (Truro) and Atlantic Veterinary College - University of Prince 

Edward Island. Screening initially for presence and absence of plasmodia and then 

assigning a subset of individuals based on the intensity rating system presented in the 

OIE Diagnostic Manual for Aquatic Animal Disease (2003) indicating R Ð Rare, L Ð 

Low, M Ð Medium, H Ð High, S Ð Systemic, and LO- Localized.  Intensities encountered 
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within each of the sample localities were noted although the frequency of each intensity 

designation within these samples was not established.  Any other signs of obvious 

pathology were noted for each location sampled. 

2.3.5 Prevalence and Intensity Determination 

From histological sections collected from individuals originating from each sample 

locality, prevalence (the percentage of individuals infected within a given sample 

locality) and intensity (the graded levels of parasites within a given infected individual) 

were determined.  The presence of different parasite stages was also noted from 

histological sections (i.e. infective plasmodia versus sporulation within the tissues).  

From molecular diagnostic analyses, prevalence was determined for each of the sampling 

localities. 

2.4 Results 

2.4.1 Parasite Prevalence and Intensity 

PCR analysis of mantle, gill and digestive gland resulted in the identification of 

Haplosporidium nelsoni infected oysters from all three sample localities (Figure 2).  

Prevalence by PCR was 50% (n=120) in Nyanza Bay, 28% in LyncheÕs River (n=58) and 

31% in East Bay (n=300) (Table 1, Figure 3). 

Histological sections of mantle, gill and digestive gland resulted in the identification of 

Haplosporidium nelsoni infected oysters from two of the three sample localities. It was 

noted through screening that oysters from Nyanza Bay were of poor overall condition, 

displaying opened and empty digestive tubules in the majority of individuals examined. 

Prevalence was 30% (n=120) in Nyanza Bay, 23%, prevalence in East Bay (n=300) and 

0% in LyncheÕs River (n=58) (Table 2, Figure 3).  None of the histologically positive 
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individuals were negative through PCR diagnostics. Observed intensities were also 

determined for Nyanza Bay and East Bay. Nyanza Bay had the greatest range of intensity 

classes from localized to heavy and with evidence of sporulation, East Bay showed 

evidence of typically light to moderate intensities (Table 3, Figure 3).  Two individual 

oysters from Nyanza Bay also showed evidence of digestive gland sporulation of H. 

nelsoni (Figure 4).  

2.5 Discussion and Conclusions  

The results of this study provide evidence of a changing landscape of disease within the 

Bras dÕOr Lakes system.  The presence of typically high intensity infections at an overall 

prevalence of (50%) within the samples collected from Nyanza Bay lend support to the 

screening programs which have identified this area as having a well established disease 

pool within the lakes (DFO).   

Active sporulation was found in the digestive glands of two oysters sampled from 

Nyanza Bay and although this was not the focus of this study it is of particular interest 

due to the fact that all oysters collected were of market size and typically sporulation is 

noted to occur most often in juvenile oysters within a population (Barber et al., 1991; 

Burreson, 1994). The poor overall condition of oysters sampled from Nyanza Bay could 

be a direct result of the MSX disease on the hosts or other contributing factors to the 

establishment of disease within this location, such as insufficient nutrition causing higher 

susceptibility to the impacts of the parasite.  

The results of sampling conducted in East Bay are quite interesting in that they depict the 

impact of widespread disease within the lakes.  This site had previously tested positive in 

histological screening  in  2003 carried out by DFO and subsequently returned negative 
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results by both histology and molecular diagnostics in 2004 (DFO, personal 

communication).  The sample size from this location in the present study was purposely 

large in order to investigate an area in which it was believed that low levels of disease 

were likely to exist. During MSX disease monitoring conducted by regulatory 

government laboratories, a typical sample size of 60 oysters is collected and subjected to 

both diagnostic methods (histology and PCR). In this study a sample of 300 oysters was 

collected from this locality in order to assess prevalence suspected to be below 5%.  This 

approach would have allowed comparison in subsequent studies of protein expression 

from those oysters within a well established and sustained disease centre such as that seen 

to occur in Nyanza Bay with that of a population just newly infected or which has been 

better able to successfully deal with infection with a new pathogen.  However, the results 

provided in this study indicated that the population suspected to have extremely low 

disease prevalence (East Bay), actually had developed into a population with prevalence 

comparable to that of the location of the initial disease outbreak (Nyanza Bay).  This 

development coupled with the observation of a large multiyear class population of oysters 

at the time of sampling likely indicate the spread or amplification of disease into 

previously unaffected or limited affected areas of the lakes system. Despite the similar 

prevalences at these two localities, intensities observed within the infected oyster 

collected from East Bay harboured an overall lower intensity of infection than infected 

individuals from Nyanza Bay, which may suggest a role for multi year pressure in 

contributing to disease establishment in this system.  A study investigating the protein 

profiles stored from these tissues compared to what would be seen at the same location 

today would provide interesting insight into whether or not the disease process differs 
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within a population largely encountering a pathogen at low levels as opposed to one who 

has had multi-year exposure to high levels of disease within the same area. 

Samples collected from LyncheÕs River in 2005 provided the first evidence of MSX 

presence in this area, however it is worthwhile to note that the population found at this 

locality was surprisingly depleted either from over-fishing, poor overall conditions or 

lack of settlement in this location and did not fit the characteristically dense makeup of 

many of the populations typically impacted by the parasite. It should be noted that the 

depleted population may have been a result of poaching which was prevalent in the Bras 

dÕOr Lakes immediately prior to the MSX outbreak. As this study was conducted only 

three years after the initial index outbreak, it is somewhat surprising that a small 

population such as that found at LyncheÕs River would show presence of the MSX 

parasite at all and raises questions about disease spread to this area.      

Of particular importance when reviewing data from the LyncheÕs River is the absence of 

histological evidence of the parasite in oyster tissues from the individuals sampled.  

Despite that no H. nelsoni plasmodia were identified through histology, the PCR 

screening of the tissues collected from these same individuals indicated a prevalence of 

28% from the study sample (n=58).  While these two diagnostic methods have been 

reported to give differences when assessing prevalence (Burreson, 2000), these 

differences are thought to result from the increase in analytical sensitivity that PCR 

achieves.  That study involved transplanting 400 uninfected oysters to lower York River 

and testing monthly using three diagnostic methods (PCR of haemolymph, PCR of 

tissues, and traditional histology), the methods reported differences in prevalence 

throughout the study (Burreson, 2000).  PCR of haemolymph provided much higher 
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prevalences during the initial exposure and infection periods, while histology and tissue 

targeted PCR showed no evidence of H. nelsoni. Over much of that study period (mid-

summer to December), prevalences reported for tissue PCR remained 10-30% higher then 

that reported for histological analysis. However, unlike the present study, plasmodia were 

detected in histological sections for all those data points in which tissue PCR positives 

were found (Burreson, 2000).  The large discrepancy seen in the prevalence seen by PCR 

and histology from LyncheÕs River in the current study may be a reflection of the 

parasiteÕs presence in this environment without development of active infections in these 

hosts. Samples were taken at the same time of year as other localities, so it is unlikely 

that these oysters will have progressed to a disease state. This finding suggests the 

presence of the parasite and associated pressure for infection development, without the 

actual establishment of disease.  Oysters within the LyncheÕs River environment may be 

better able to resist  infection or disease pressure.  This could result from lessened stress, 

better overall initial health, or having access to richer environmental resources.  Another 

limiting factor at this locality could be that environmental conditions are not conducive to 

disease development past the initial presence of organisms in tissues or spread of 

plasmodia to this environment, which contains limiting factors. Within the eastern US 

range of H. nelsoni, both salinity and temperature have been identified as impactful on 

the success of the parasite year to year, but when envrionmetnal conditions are not 

condusive to diseases infections are still detected within some members of the population 

though they tend to be of lower overall intensity and prevalence (Burreson and Ford, 

2004).   A difference in susceptibility has been noted for the parasite Bonamia exitiosa in 

Ostrea chilensis from New Zealand with environmental stressors including extreme 
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temperatures, salinity, starvation, handling, and concurrent heavy infections with 

apicomplexans found in association with an increase in host susceptibility (Hine and 

Thorne, 2002). In the current study, marked differences in temperature and salinity, 

however, were not found at the time of sampling between the three localities investigated 

in this study. It is unknown if significant differences in these two environmental factors 

occurred in the monthÕs prior that may have had an impact on overall susceptibility of the 

three populations tested.  The Bras dÕOr Lakes do comprise a unique environmental 

setting with an almost entirely land locked salt and estuarine water system. There are low 

tidal influences (1m/s-03m/s, Dupont et al., 2003) on both the northwestern as well as the 

southwestern tips of Cape Breton Island, but due to the comparatively small connections 

these make with the coastal waters of the Atlantic, the flushing rates of the system are 

severely depressed and, when modeled, show a low rate of two years for the entire 

system (Petrie and Bugden, 2002). This low rate may account for some changes in 

dispersion of infective spores, and may explain why certain locations in the lakes are 

continued areas of established disease and others display changes over time. 

 

Temperature and salinity for this environment are typically characterized by a layered 

system of low salinity and varied temperature found in surface waters, while the lower 

depth flowing waters are impacted by atmospheric pressure and the runoff of surrounding 

freshwater systems, and the deepest waters tend to exhibit higher salinities and more 

stable low temperatures (Parker et al., 2007).   The seasonal fluctuations in temperature 

seen in the Bras dÕOr Lakes range from 0¡C in most parts of the Lakes in winter to a 6-

10¡C range in spring with a subsequent rise in summer and early fall to a high of 20¡C in 
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the shallowest estuaries of the lakes (Parker et al., 2007).  In spring, surface water 

salinities range from 20-30 psu depending on the locale of the lakes tested. Wright (1976) 

noted that heavy rainfall events had an impact on the salinity measured in a given area of 

up to 5 m in depth and much lower salinity levels within certain bays have also been 

noted near influxes of freshwater rivers (Davis and Browne, 1996).  Seasonal barometric 

pressure has a significant impact on salinity in the lakes, with typically low salinity levels 

noted in rainy/runoff seasons of spring and fall and the more highly expressed salinities 

of the dry summer seasons.  Young (1973) noted a marked fluctuation in salinities in 

Nyanza Bay over the course of a single day resulting from an August storm and 

associated high winds ranging from surface measurements of 4.3 psu one day to 8.4 psu 

the next and bottom salinity levels of 10.2 to 16.8 psu. Due to these large fluctuations the 

differences seen in susceptibility at any particular locale within the lakes could result 

from these traditional limitations of the parasite. 

 

The combined characteristics of the Bras dÕOr Lakes make them a unique and highly 

specified environment in which to support a unique biota.  Without knowing the life 

cycle of this parasite, it remains unknown whether the absence of key intermediate host 

species may be impacting the establishment of disease in a particular bay.  Many 

common species found along the Atlantic coast of Nova Scotia, are not found within the 

Lakes likely due to the lack of tidal pressures that many of the coastal forms are 

accustomed.  The base of the food web within the lakes system are the planktonic 

communities, but these can often be depressed due to low nutrient levels found in many 

parts of the LakesÕ system, although in some bays eutrophication does occur and provides 
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ample sources of nitrate.  Along with phyto- and zooplankton many species of larval fish 

occupy the lakes including flounder, smelt, cod and mackerel (Parker et al., 2007).  

Benthic algal and seaweed communities thrive in certain portions of the Lakes and may 

be so plentiful as to disrupt the establishment of invertebrates in the benthos.  

Polycheates, mysids, foraminifera, mussels and sea urchins are also commonly found in 

certain locales in the Lakes. Groundfish and pelagic fish occur in the Lakes with key 

commercial species in both representative groups being cod and herring and several non 

commercial species including smelt, gaspereau, stickleback and eel (Lavoie, 1995). The 

role of the overall biotic communities may be an essential factor in spread and 

establishment on H. nelsoni within an environment, any key differences in the make up of 

these communities within the LyncheÕs River locality could contribute to the 

understanding of these impacts. 

Certainly, the genetic influence on overall host susceptibility also exists (Gaffney and 

Bushek, 1996) and genotypes within a particular population are under some influences of 

the environment in which they live (Bushek and Allen, 1996).  Oyster populations within 

the Bras dÕOr Lakes have been characterized as genetically homogeneous (Vercaemer et 

al., 2010) and much movement of oysters has occurred around the Lakes thus; resistance 

and tolerance factors within the genotypes of this population are unlikely to play a role in 

the differences in prevalences noted among the populations studied.  Regardless of the 

particular factors involved, this work identifies LyncheÕs River as a study locality with an 

interesting host population which could be investigated further with regards to host 

parasite interactions as well as the role of environment in disease establishment.    
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Table 1: Prevalence determined from each sampling locality through PCR analysis. 
Numbers in brackets indicate number of oysters sampled and analyzed. 

Sampling Locality Prevalence Through PCR 
Analysis (n) 

Nyanza Bay (historically 
positive) 

50% (120) 

East Bay (Some history of 
low level infection) 

30.7% (300) 

LyncheÕs River (no record 
of infection) 

28% (58) 
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Table 2: Prevalence determined from each sampling locality through histological 
analysis. Numbers in brackets indicate number of oysters sampled and analyzed. 

Sampling Locality Prevalence Through 
Histological Analysis (n) 

Nyanza Bay (historically 
positive) 

30% (120) 

East Bay (Some history of 
low level infection) 

23% (300) 

LyncheÕs River (no record 
of infection) 

0% (58) 
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Table 3: Intensity ranges determined from each sampling locality through histological 
analysis.  LO Ð localized, R Ð rare, L Ð low, M Ð moderate, H Ð heavy, S Ð systemic.    

Sampling Locality Intensity Classes Through 
Histological Analysis 

Nyanza Bay (historically 
positive) 

LO, R, L, M, H, S 

East Bay (Some history of 
low level infection) 

R, L, M 

LyncheÕs River (no record 
of infection) 

None 
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Figure 1: Bras dÕOr Lakes Cape Breton, Nova Scotia, Canada.  Sampling localities, 
active disease area; Nyanza Bay (1), limited disease identified; East Bay (2), new 
sampling locality; LyncheÕs River (3). 
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Figure 2: A. PCR results from four individuals (2, 3, 4, 5) collected from LyncheÕs River, 
NS, whose histological analysis showed no evidence of infection with Haplosporidium 
nelsoni, with positive (6) and negative (1) controls. B. PCR results from five individuals 
(1, 2, 3, 4, 5) collected from East Bay, NS, whose individual histological analysis showed 
no evidence of infection with Haplosporidium nelsoni, with positive (7) and negative (6) 
controls. 
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Chapter 3: 
Comparison of protein profiles of Haplosporidium nelsoni infected and uninfected 

Crassostrea virginica tissues collected from the Bras dÕOr Lakes, Cape Breton, Nova 
Scotia. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 85 

3.1 Abstract 
 
Study of the MSX parasite, Haplosporidium nelsoni, relies on in situ identification and 

analysis of the parasite in infected Eastern oysters, Crassostrea virginica, as the life cycle 

of this parasite is unknown and transmission and culture within the laboratory are not 

possible.  Thus, information regarding the cellular activity facilitating the successful 

establishment and progression of the disease caused by H. nelsoni is limited.  The arrival 

of this parasitic species within a new environmental system, the Bras dÕOr Lakes, Cape 

Breton, NS, Canada, provided a new study system in which to investigate the disease 

caused by MSX infection.  Tissues from individual oyster hosts, having been screened in 

Chapter 2, through two diagnostic methodologies were assigned to a disease state group 

for analysis: infected (high intensity systemic infections) or uninfected (no evidence of 

infection apparent through either diagnostic test).  Constituent proteins from tissue 

collections of these two disease state groups were compared using one and two 

dimensional gel electrophoresis with the incorporation of differential detergent separation 

in order to identify any consistent protein changes associated with disease. Individual 

variability, as well as protein abundance among the several tissues studied presented 

difficulties in elucidating consistent differences in protein profiles between disease state 

groups.  The methodologies presented, however, may provide new ways to study the 

MSX parasite despite traditional challenges. 
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3.2 Introduction 

Haplosporidium nelsoni was first identified in Canadian waters in 2002 in populations of 

C. virginica from the Bras dÕOr Lakes in Cape Breton, Nova Scotia, Canada (Stephenson 

et al 2003), a unique saltwater system with very low tidal pressures and low turnover 

rates due to their being almost completely landlocked (Dupont et al., 2003).  Mortalities 

were reported in 95% of stocks affected and surveillance in subsequent years indicated 

some localized spread, however there were regions in the  of the lakes where the presence 

of the parasite through PCR and histological testing (DFO- pers. com.) was not identified.  

The appearance of the parasite in the Bras dÕOr Lakes was somewhat puzzling due to the 

northern spread of the parasite being interrupted (its range until that point had included 

the bulk of the eastern seaboard of the United States) (Burreson and Ford, 2004).  From 

the established range along the coast of Maine there have been no reports of the parasite 

along the Atlantic coast of Nova Scotia.  The parasite still eludes intense scientific 

investigation in that its lifecycle is as yet unknown and it is also not clear what, if any, 

intermediate hosts it employs during its spread.  It is also not culturable, so investigators 

must rely on samples obtained through field infections.  What is known about this 

parasite is its propensity to decimate na•ve populations of the eastern oyster, when it is 

introduced (Andrews, 1968; Andrews and Wood, 1967; Ford and Haskin, 1982; Renault 

et al., 2000; Stephenson et al., 2003).  Because of this, an early indicator as a flagship 

warning of spread and establishment would be of great use to those areas and parties who 

have yet to encounter this disease.  Within Eastern oyster (Crassostrea virginica) culture 

practices, the ability to assess health of a stock in areas of MSX (Haplosporidium 

nelsoni) disease pressures, relating to acquisition of infection or infection intensity, 
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without having to carry out specific diagnostics back at a remote laboratory would be a 

valuable tool.  The role of protein interactions involved in parasitic infections is at the 

forefront of parasite infiltration and success.   

Parasite infections are among some of the most complex biological interactions 

undertaken between species (Combes, 2001).  At the heart of this is the intimacy with 

which a parasite interacts with its host, and in particular within the protozoal parasites 

their impact on cellular defense and function has been well documented (Goedken et al., 

2005; Montes et al., 1996; Stafford et al., 2002; Rollinghoff et al., 2001).   

Protein interactions from both host cells and the parasite itself are often at the forefront of 

invasion, infection and proliferation (Shallom et al., 1999; Ayub et al., 2005).  This can 

be seen in complex terms in the interplay of adaptive immune functions of many 

vertebrates.  While innate immune functions are sometimes considered less complex, 

there are nevertheless comprised of a myriad of functional protein defense mechanisms, 

as well as many important protein functions utilized by parasites themselves to aid in 

their success at each stage of their lifecycle (Mosser and Brittingham, 1997; Locksley, 

1997; Sacks and Sher, 2002; Turner, 2002).    

Examination of protein profiles to map and analyze disease progression can be used to 

indicate possible proteins involved in both parasite establishment as well as host defense. 

Proteins exist within every structure and functional role within individual cells, and may 

not be readily accessed for study if targeted through a single extraction method.  The 

isolation of proteins of different hydrophobicities from tissues is thus an important 

consideration when undertaking a proteomics study.  Constituent tissue proteins are 

released through the paired action of mechanical disruption along with the presence of 
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buffers used to solubilize target protein groups.  The myriad of proteins with regard to 

solubility, pH range and tolerance require the use of several specific buffers sequentially 

in order to retrieve the highest numbers of representative proteins from a given tissue.  

Ramsby (1999) developed a differential detergent fractionation (DDF) methodology 

targeted at doing just this in order to separate proteins occurring in different structural 

and functional compartments for study.   Initially developed for use within cultured cell 

lines, the protocol has the advantage of lending insights in to the particular cellular 

compartment the protein changes identified may exist. Its simplicity and reduction of 

overall complexity in given samples lends itself nicely to use with both SDS-PAGE and 

two-dimensional gel electrophoresis (2-DGE) approaches.  While SDS-PAGE separates 

proteins based on size and several samples can be run on the same gel, the 2-DGE 

approach separates proteins based on both isolelectric point and size thus allowing for 

more effective separation of individual proteins.    

Due to the constraint involved in the study of MSX, an un-culturable parasitic species 

whose lifecycle is unknown, this study set out to use a proteomics approach to identify 

possible protein targets involved in parasite establishment and host defense by comparing 

extracts of infected and non-infected oysters via protein gel electrophoresis. Pre-

fractionation was carried out in order to reduce the protein profile complexity and 

maximize the chances of identifying differences between study groups. 

3.3 Materials and Methods 

3.3.1 Oyster Collection 

Oysters were collected from three localities in the Bras dÕOr Lakes water system by hand 

picking while diving in the Fall of 2005.  The three localities sampled were Nyanza Bay, 
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where the initial outbreak and sustained disease and mortalities have been reported; East 

Bay, with some past evidence of the presence of the parasite but no documentation of 

disease; and LyncheÕs River, a previously untested locality.  The oysters from each group 

were tested for presence of the parasite through both histology and PCR and selected 

based on these diagnostic methods for analysis. 

3.3.2 Selection Criteria for Protein Analysis 

Each oyster was selected for analysis based on diagnostic screening method results.  The 

negative oyster group (n=7) was established based on both histological and PCR analyses 

indicating the absence of parasite DNA and plasmodia.  The positive oyster group (n=6) 

was selected based on individuals testing positive in PCR analysis, as well as showing 

high numbers of plasmodia in the tissues when histological sections were examined, with 

no evidence of sporulation.  The two groups were therefore at opposite extremes of the 

disease spectrum with no samples representing low-level or mid-range infections.  This 

was done in order to maximize differences between the study groups when assessing 

protein profiles. 

3.3.3 Tissue preparation 

Cross sections of digestive gland, gill and mantle tissues were excised from sampled 

oysters and frozen at -80¡C.  Tissues from those individuals selected from each 

population grouping, were homogenized on ice in 1.6 ml microtubes using a sterilized 

manual tissue homogenizer in the presence of lysis buffer (20 mM TrisHCl, pH 7.5) and 

protease inhibitors (1 mM PMSF and 50 mM EDTA).  Following tissue lysis, samples 

were centrifuged at 4¡C at 15000 x g for 10 min.  The supernatant (20 mM TrisHCl, pH 

7.5 buffer) was transferred to a new 1.6ml microtube for analysis and the pellet returned 
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to -80¡C for storage.  An aliquot of sample was assessed for protein concentration using a 

dye-binding assay with bovine ! -globulin as reference (Bradford, 1976). 

3.3.4 Differential Detergent Fractionation   

A differential detergent fractionation (DDF) method (Ramsby, 1999) was also applied to 

tissue samples to further separate constituent proteins so as to reduce the number and 

complexity of proteins in each fractions and more clearly elucidate differences in protein 

profiles between disease groupings. Tissue cell pellets from the TrisHCL extractions 

above were suspended in ice cold Buffer-A (300 mM sucrose, 100 mM NaCl, 3 mM 

MgCl2, 5 mM EDTA, 2 mM PMSF, ROCHE incomplete cocktail protease inhibitor in 10 

mM PIPES, pH 7.2) containing 0.02% digitonin for 10 min and centrifuged at 1,000 "  g. 

The resultant supernatant included primarily cytosolic proteins (Digitonin buffer). The 

pellet was then extracted with ice-cold 1.0 % (v/v) Triton X-100 in buffer-A for 30 min 

and centrifuged at 5,000 "  g for 30 min. The supernatant obtained from this second buffer 

extraction represented the solubilized membrane fraction (Triton X-100 buffer). The 

remaining pellet was suspended in Buffer-A containing 0.5% deoxycholate, 1.0% Tween-

40 and homogenized in a Teflon homogenizer and centrifuged at 7,000 "  g for 10 min. 

The solubilized supernatant from the third extraction buffer was the nuclear fraction 

(Tween/Deoxycholate buffer). Finally, the detergent-resistant pellet was dissolved in 5% 

(w/v) SDS in 10 mM sodium phosphate pH 7.4, and contained the cytoskeletal fraction. 

The resultant extracts were assessed for protein concentration using a dye-binding assay 

(Bradford, 1976). 
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3.3.5 SDS-PAGE 

Samples (5 µg) from the same individuals using all preparative detergent extraction 

buffers were prepared 1:1 in 2X SDS-PAGE sample buffer (2% SDS, 10% glycerol, 62 

mM Tris-HCl, pH 6.8, 100 mM DL-dithiothreitol (DTT )) and run on a 12% SDS- 

polyacrylamide gel (Laemmli 1970) at 150V for 1.25 h.  A BIORAD Prestained Broad 

Range SDS PAGE Marker was used as a  molecular mass indicator  Gels were silver 

stained (Swain and Ross, 1995) and images acquired with BioRad GS-800 Densitometer 

and compared visually through overlay of scanned samples.  

3.3.6 2-D Electrophoresis 

Individual samples were chosen for further analysis using 2-D gel electrophoresis (2-

DGE) based on the same categories of disease from the populations studied as outlined 

above. Stored protein extract samples were transferred to dialysis tubing (3500 MWCO) 

and dialyzed for 24 h against 10 mM Tris-HCl pH 8.0.  Following dialysis, samples were 

centrifuged (4¼C at 200 x g for 20 min) and the supernatant removed and frozen (-80¼C) 

until selected for analysis. Samples containing 200 µg of total protein were diluted 1:2 

with rehydration buffer (6 M urea, 2 M thiourea, 2% CHAPS) containing 20 mM 

dithiothreitol (DTT) and 0.5% carrier ampholytes and added to 18 cm Immobiline dry 

strips pH 4Ð10 (Amersham-Pharmacia, Uppsala, Sweden). Isoelectric focusing in the first 

dimension was obtained using a Multiphor II system (Amersham Pharmacia) run at 30 V 

for 10 h, then increased to 8000 V over a 6 h period and held at 8000 V for 3 h. The 

sample strips were initially equilibrated for 15 min in 50 mM TrisHCl pH 8.8, 6 M urea, 

30% v/v glycerol, 2% SDS, 65 mM DTT, followed by 15 min in 50 mM TrisHCl  pH 8.8, 

6 M urea, 30% v/v glycerol, 2% SDS, 135 mM iodoacetamide. For the second dimension, 
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strips were then laid upon and run in a 1 mm thick, 14% SDS-PAGE gel for 2100 Vh. 

Precision standards (Bio-Rad,161-0318) were employed in the second dimension gel to 

aid in estimation of protein molecular mass. Gels were then silver stained (Swain and 

Ross, 1995) and imaged in the GS800 BioRad densitometer for visual overlay 

comparison of profiles.  Scans were compared visually initially for gross changes in the 

form of presence or absence of protein spots between infected and uninfected individuals 

subsequently more subtle changes were compared through numbering protein spots and 

determining the presence of spot intensity changes relating to infection.   Variation was 

determined to be so high upon initial examination that further statistical analysis of band 

intensity was not performed.  

3.4 Results 

3.4.1 Differential Detergent Fractionation and SDS-PAGE 

Whole tissue homogenates and extracts separated on SDS-PAGE gels showed a diverse 

number of proteins (Fig. 1).  Consistent and intense protein bands were observed 

irrespective of disease state in the 20 mM TrisHCl, pH 7.5 buffer extract occurring at 

approximately 40-45 kDa, 30 kDa, 22 kDa, 17 kDa and 10 kDa (Fig. 1A). High 

molecular weight proteins were observed as highly variable and occurred in abundance in 

the range of 75-250 kDa (Fig. 1A).  Through comparison of individual samples 

representing infected and uninfected oyster tissues, variation was observed in both 

groups, with variants also being noted among any given individuals within disease groups 

(Fig. 1A).   

Incorporation of the differential detergent fractionation methodology allowed for 

separation of proteins from tissue homogenates.  The proteins obtained from this protocol 
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were only able to be assessed through one dimensional SDS-PAGE due to the low sample 

volumes achieved through sequential fractionation of individual samples. Due to the 

amount of variability seen among samples run using SDS-PAGE, pooling of samples was 

not considered an appropriate approach in order to increase protein sample volumes. The 

protein profiles were more easily analyzed following extraction with each detergent 

buffer (Fig 1B to D). Protein recovery for each fraction was noted as high with numerous 

faint and intense banding patterns achieved for each.  As seen in Fig. 1, consistent pattern 

of bands was observed among all samples within each of the extraction buffer extracts; 

for example the cytosolic compartment (Fig. 1B, 150 kDa, 45 kDa, 35 kDa and 22 kDa), 

the membrane compartment (Fig. 1C; 150 kDa, 90 kDa, 45 kDa, 35 kDa, 30 kDa) and 

nuclear compartment (Fig. 1D; 45 kDa, 40 kDa, 37 kDa, 30 kDa, 25 kDa).  Variability 

was highest within the high molecular weight proteins with an abundance of bands 

concentrated in this area for most samples of all three pre-fractionation compartments.   

With the SDS-PAGE, variation among disease groups showed no consistent changes that 

could not also be attributed to individual variation within groups (Fig. 1). 

3.4.2 2-D Gel Electrophoresis 

Two-dimensional gel electrophoresis (2-DE) was also tested to resolve the 

complex protein matrix in the tissues and hopefully, better elucidate constituent proteins 

between diseased and non-diseased oysters (Fig. 2). Good separation and staining were 

achieved after incorporation of dialysis in preparative protocol (Fig. 2). Collections of 

consistent protein spot patterns were observed irrespective of disease group at 45 kDa 

and 30 kDa, with a wide spectrum of protein spots noted between these groupings on the 

individual gels. These profiles varied greatly among and between disease groups.  High 
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molecular weight proteins were sparse in appearance on 2-DGE gels, with only two 

protein spots consistently observed among all samples located at approximately 75 kDa. 

A grouping of variable protein spots in the low molecular weight range indicated more 

basic proteins in the tissue samples run.  Arrangements of three proteins within this range 

(25-27 kDa) were consistent among all samples.  As with the one dimensional 

approaches, the variability within these tissues was similarly distributed among disease 

groupings and varied widely within individuals of each group (Fig. 2). 

3.5 Discussion and Conclusions 

It was hypothesized that the most heavily infected individuals (those chosen for analysis) 

in comparison with those who displayed no evidence of infection through both diagnostic 

methods, would have a discernable protein profile difference due to the impact of the 

presence of the parasites alone.  Unfortunately, analyzing tissue homogenates by SDS-

PAGE, as well as DDF extracted proteins, no discernable differences were identified due 

to the variability seen among all samples. The variability seen among infected and 

uninfected groups was similar to that seen within individuals from each of these groups. 

A larger sample size may have aided in reducing the impacts of individual variability 

among the oyster populations investigated.  This lack of identifiable protein markers for 

the heavily diseased and non-diseased states may have missed more active immune 

protein reactions in that heavily diseased animals may have had to divert energy to basic 

physiological survival at a certain infection level, perhaps the study of different intensity 

MSX disease states may have been more informative. Individual variability is something 

that is quite often identified as impacting molluscan research (Huffman and Tripp, 1982; 

Auffret, 1985; McCormick-Ray and Howard, 1991; Chu and La Peyre, 1993; Ford et al., 
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1994; Oliver and Fisher, 1995, Bayne 1998).  There were several factors impeding more 

direct comparison in this study.  The lack of control over timing of infection, disease 

progression, environmental conditions and health of individual oysters may have 

contributed to the variability observed. Thus, the active periods of infiltration and defense 

may have been missed. The tissues collected for protein analysis were targeted as  being 

the sites at which the parasite would most likely be found in abundance.  However, the 

combination of three complex tissues (digestive gland, gill and mantle)  for analysis 

likely also contributed greatly to the overwhelming variability seen in this study. Host 

tissues should have most likely be dissected into distinct mantle, digestive gland and gill 

fractions, homogenized and run separately to obtain more homogeneous protein profiles. 

This would aid greatly in reducing variability, as well as provide localized information on 

those proteins expressed in these tissues under differing disease states. More localized 

dissection of actively infected tissues to obtain higher concentration of parasite proteins 

relative to host tissue proteins may assist in increasing the potential to observe proteins 

involved in that host-parasite interaction. However, given that H. nelsoni is a microscopic 

parasite and selective stains are required to distinguish it from host tissue histologically, it 

would be difficult to selectively enrich tissue extracts with parasite cells. 

When assessing the host parasite interaction of a system in which so little is known about 

the parasite in question, protein targets have the potential to yield a wealth of information 

regarding the actual cellular processes underway.  While research surrounding MSX in 

particular has been fraught with difficulties, targets for protein analysis have looked 

primarily at overall protein concentration, hematological proteins, and host defense 

protein identification (Feng 1970; Ford 1986; Barber 1988).  However, the use of 
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proteomics in studying the subtle effects of pollutants has steadily grown with the 

development of more precise technologies such as 2-DGE and more recently DIGE.  In 

their review of these applications relating to a proteomics study investigating oxidative 

stress in bivalves Sheenan and McDonagh (2008) highlight the importance of 

physiological traits of comparative groups as well.  In the analysis of the bivalve QX 

disease in the Sydney rock oyster, caused by the paramyxean parasite Marteilia sydneyi, 

Saccostrea glomerata, protein markers were successfully identified using the 2-DGE 

approach targeting both resistant and susceptible oyster tissue groups as well as the 

sporulation stage of the parasite in haemolymph for comparison (Simonian et al., 2009 a, 

b)  

The environment from which samples were taken for the current study was a relatively 

new area of expression for MSX disease, and while samples were taken from different 

locations in order to make comparisons between environments of intense and low disease 

pressure the progression of disease at each locality sampled resulted in similar 

prevalences occurring from each location (Chapter 2). In addition, the comparison of 

samples across sampling localities may result in differences purely resulting from 

environmental differences found at each locality (food, temperature and pH regime, 

stressors, predation).  While the Bras dÕOr Lakes are quite homogenous and exposed to 

many of the same environmental pressures, the impacts of each of these even expressed 

as slight variances at each location was not known.   

Another factor which may have been at play is the limits of the diagnostic tests available. 

While a negative result by both PCR and histology is the best indicator of absence of the 

parasite, there still remains the possibility of the parasitesÕ presence not being captured by 
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either technique and instead being a more localized focal infection contained within 

adjacent untested tissues.  This would likely have an impact on protein expression and 

results in similar profiles being observed for both an established positive and a 

presumptive (though false) negative sample.  Similarly, it is not known what difference, 

if  any, would exist in protein profiles obtained from a sample infected with one 

plasmodia versus many, or even if a sample contained unviable or killed parasites.   

Both the differential detergent fractionation as well as the 2D electrophoresis 

methodologies show promise in their separation and clear representation of constituent 

sample proteins.  It was determined that dialysis of samples before analysis using 2D 

electrophoresis greatly impacts the clarity and isoelectric focusing of marine mollusk 

tissue samples.  The additional detergent extractions used typically in cell culture to 

target different cellular fractions (Ramsby, 1999) greatly reduced the number of proteins 

run in SDS-PAGE for each sample, and the proteins proved more clearly separated and 

defined for each extract.  It is not clear if the detergents separated proteins based on 

cellular organization (cytosolic, membrane, and nuclear fractions) as hypothesized with 

cultured cells or solely on lipophilicity, but this would be interesting to investigate and 

could be used to focus further study based on where defensive action is thought to occur 

in host-parasite systems such as MSX and C. virginica.  Many of the high molecular 

weight proteins visualized on the SDS-PAGE runs of the DDF treated samples were not 

clearly separated using the initial homogenization extraction, nor were they abundant 

enough to be studied through 2-D gel electrophoresis.  For these proteins, the DDF 

protocol showed a specific application in targeting these profiles from the tissues studied. 

Larger aggregated samples would be needed to obtain sufficient protein concentrations 
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for full 2-DE analysis, but in order to achieve an appropriate level of individual 

variability for comparison, another factor such as the use of a single tissue type would 

have to be substituted in the initial collection protocol. 

Continued study of the MSX parasite, Haplosporidium nelsoni within the eastern oyster 

population of the Bras dÕOr Lakes would need to isolate specific tissues and localities to 

target in order to implement the techniques developed here to investigate protein profiles 

relating to infection and disease in this host-parasite system.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 99 

 
3.6 References 

Andrews, J.D. and J.L. Wood. 1967. Oyster mortality studies in Virginia. VI. History 
and distribution of Minchinia nelsoni, a pathogen of oysters in Virginia. Chesapeake 
Sci. 8(1): 1-13. 

Andrews, J.D. 1968. Oyster mortality studies in Virginia. VII. Review of 
epizootiology and origin of Minchinia nelsoni. Proc. Nat. Shellfisheries Assoc. 58: 23-
36. 

Auffret M. 1985. Morphologie comparative des types hemocytarles chez quelques 
mollusques bivalves d'interet commercial. These de doctorat, Universite de Eretagne 
Occldentale,Brest. 
 
Ayub, M.J., C. R. Smulski, B. Nyambega, N. Bercovich, D. Masiga, M.P. Vazquez, C. F. 
Aquilar and M. J. Levin. 2005. Protein-protein interaction map of the Trypanosoma 
cruzi ribosomal P protein complex. Gene. 357: 129-136. 

Barber, B.J., S.E. Ford and H.H. Haskin, 1988. Effects of the parasite MSX 
(Haplosporidium neisoni)on oyster metabolism. II Tissue biochemical composition. 
Comp. Biochem. Physiol, 91A: 603-608. 
 
Bayne, B.L. 1998. The physiology of suspension feeding bivalve molluscs: an 
introduction to the PlymouthÔTROPHEEÕ workshop. J. Exp. Mar. Biol. Ecol. 219: 1Ð
19. 
 
Bradford, M. 1976. A Rapid and Sensitive Method for the Quantitation of 
Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. 
Anal. Biochem. 72: 248-254. 
 
Burreson, E.M. and S. Ford. 2004. A review of recent information on the 
Haplosporidia, with a special reference to Haplosporidium nelsoni (MSX disease). 
Aquat. Liv. Resour. 17: 499-517. 
 
Chu F.L.E. and J. F. LaPeyre. 1993. Perkinsus marinus susceptibility and defense-
related activities in eastern oysters Crassostrea virginica. Temperature effects. Dis. 
Aquat. Org. 16: 223-234. 
 
Combes, C. 2001. Parasitism: the ecology and evolution of intimate interactions. 
Interspecific interactions. University of Chicago Press. [Translated by Isaure de Buron 
and Vincent A. Connors.] 
 
Dupont, F., B. Petrie and J. Chaffey. 2003. Modelling the tides of the Bras dÕOr 
Lakes. Can. Tech. Rep. Hydrogr. Ocean Sci. 230: viii + 53 pp. 
 



 100 

Feng, S.Y. and W.J. Canzonier. 1970. Humoral responses in the American oyster 
(Crassostrea virginica) infected with Bucephalus species and Minchinia nelsoni. In: 
Snieszko SF (ed) A symposium on diseases of fishes and shellfishes. Am Fish Soc Spec 
Publ, Washington, DC,  497-510 
 
Ford, S.E. 1986. Comparison of hemolymph proteins from resistant and susceptible 
oysters, Crassostrea virginica, exposed to the parasite Haplosporidium nelsoni 
(MSX). J. Invertebr. Pathol. 47: 283-294. 

Ford, S.E., K.A. Alcox, and S.A. Kanaley. 1994. Comparative cytometric and 
microscopic analyses of oyster hemocytes J. Invertebr. Pathol., 64: 114Ð122 

Ford, S.E. and H.H. Haskin. 1982. History and epizootiology of Haplosporidium 
nelsoni (MSX), an oyster pathogen in Delaware Bay 1957-1980. J. Invertebr. Pathol. 
40: 118-141. 

Goedken, M., B. Morsey, I. Sunila, and S. DeGuise. 2005. Immunomodulation of 
Crassostrea gigas and Crassostrea virginica cellular defense mechanisms by 
Perkinsus marinus. J. Shellfish Res. 24 (2): 487-496. 
 
Huffman, J.E. and M.R. Tripp, 1982. Cell types and hydrolytic enzymes of soft shell 
clam (Mya arenaria) hemocytes. J. Invertebr. Pathol., 40: 68-74. 
 
Laemmli, U. K. 1970. Cleavage of Structural Proteins during the Assembly of the 
Head of Bacteriophage T4. Nature 227: 680 Ð 685. 

Locksley R.M. 1997. Exploitation of immune and other defence mechanisms by 
parasitesÑ an overview. Parasitology. 115: 5Ð57. 

McCormick-Ray, M.G. and T. Howard. 1991. Morphology and mobility of oyster 
hemocytes: evidence for seasonal variations. J. Invertebr. Pathol., 58: 219Ð230 

Mosser D.M. and A. Brittingham. 1997. Leishmania, macrophages and complement: a 
tale of subversion and exploitation. Parasitology. 115: 19-23.  

Montes, J., M.A. Longa and A. Lama. 1996. Prevalence of Bonamia ostreae in Galicia 
(NW Spain) during 1994. Bull.  Europ. Assoc. Fish Pathol. 16: 27-29. 

Oliver, L.M. and W.S. Fisher. 1995.  Comparative form and function of oyster 
Crassostrea virginica hemocytes from Chesapeake Bay (Virginia) and Apalachicola 
Bay (Florida) Dis. Aquat. Org., 22: 217Ð225. 

Ramsby, M.L., and G.G. Makowski. 1999. Differential Detergent Fractionation of 
Eukaryotic Cells: Analysis by Two-Dimensional Gel Electrophoresis. In Methods in 
Molecular Biology : 2D Proteome Analysis Protocols. Volume 112. Edited by Link AJ. 
Humana Press Inc, Totawa, NJ, USA. 53-66 



 101 

Renault, T., N.A. Stokes, B. Chollet, N. Cochennec, F. Berthe, A. GŽrard and E.M. 
Burreson. 2000. Haplosporidiosis in the Pacific oyster Crassostrea gigas from the 
French Atlantic coast. Dis. Aquat. Org. 42: 207-214. 

Ršllinghoff, M.,  C. Bogdan, A. Gessner, and M. Lohoff. 2001. Immunity to Pro tozoa. 
Life Sciences. Blackwell Scientific Publications. 1-7 

Sacks, D., and A. Sher. 2002. Evasion of innate immunity by parasitic protozoa. Nat. 
Immunol. 3: 1041Ð1047. 

Shallom, S. K. Zhang, L. Jiang, and P. Rathod. 1999. Essential protein-protein 
interactions between Plasmodium falciparum thymidylate synthase and 
dihydrofolate reductase domains. J. Biol. Chem. 274 (53): 37781-37786. 

Sheenan, D. and B. McDonagh. 2008.  Oxidative stress and bivalves: a proteomic 
approach.  Invert. Surv. 5: 110-123. 

Simonian, M., S.V. Nair, W.A. O'Connor and D.A. Raftos. 2009a. Protein markers of 
Marteilia sydneyi infection in Sydney rock oysters, Saccostrea glomerata. J. Fish Dis. 
32: 367-375. 

Simonian, M., S.V. Nair, J.A. Nell and D.A. Raftos. 2009b. Proteomic clues to the 
identification of QX disease-resistance biomarkers in selectively bred Sydney rock 
oysters, Saccostrea glomerata. J. Proteomics 73: 209-217. 

Stafford J.L., N.F.Neumann and M. Belosevic. 2002. Macrophage-mediated innate 
host defense against protozoan parasites. Crit. Rev. Microbiol. 28(3): 187-248. 

Stephenson M.F., S.E. McGladdery, M. Maillet and A. Veniot. 2003. First reported 
occurrence of MSX in Canada. J. Shellfish Res. 22: 355 (Abstract). 
 
Swain, M. and N. W. Ross. 1995. A silver stain protocol for protein yielding high 
resolution and transparent background in dodecyl sulfate-polyacrylamide gels. 
Electrophoresis 16: 948-951. 
 
Turner, C.M.R., 2002. A perspective on clonal phenotypic (antigenic) variation in 
protozoan parasites. Parasitology 125: 517Ð523





 103 

 
 
 
 
 
Figure 1: One dimensional SDS-PAGE profiles of gill, mantle, and digestive gland of four representative individual oysters with (1, 
2) and without (3, 4) evidence of infection with Haplosporidium nelsoni.  Different detergent fractions (DDFs) included, (A) 20 mM 
TrisHCl, pH 7.5 buffer; (B) Digitonin buffer; (C) Triton X-100 buffer; (D) Tween/Deoxycholate buffer all separated on 12% 
polyacrylamide gels. 
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Figure 2: Two-dimensional gel electrophoresis profile of gill, mantle and digestive gland proteins for one sample before incorporation 
of a dialysis preparative protocol (A). Two-dimensional gel electrophoresis profiles of gill mantle and digestive gland proteins of four 
representative individual oysters (B) with (1, 2) and without (3, 4) evidence of infection with Haplosporidium nelsoni.  First 
dimension run on pH 4-10 IPG strips and the second dimension run on 14% polyacrylamide gels. 
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Chapter 4 
 
 

Differential protein expression from haemolymph of Crassostrea virginica following 
field infection with Haplosporidium nelsoni in Gloucester Point, Virginia USA. 
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4.1 Abstract 
 
Study of the eastern oyster, Crassostrea virginica, proteome in the context of infection 

with Haplosporidium nelsoni has often proved difficult due to the individual variability 

encountered when undertaking comparisons of similarly treated individuals.  In order to 

attempt to minimize this effect, a study was carried out within the Chesapeake Bay 

system of Virginia, USA, targeting haemolymph proteins of individual na•ve oysters 

exposed to an MSX endemic area and sampled over time.  Prevalence of infection with 

MSX, as determined by histology, in 2006 reached 57 % (100% by PCR) and with 79% 

associated mortality. In 2007, prevalence was 88.6% (100% by PCR) with only 21% 

mortality.  The study population from 2007 displayed a range of infection intensities, 

which were group into four intensity classes (N-none, L-low, M-medium, H-high) for 

protein and enzyme analysis.  Overall protein concentration differed significantly over 

time within those individuals who showed no evidence of infection by histology and 

among all intensity groupings at the final sample time, two months post-deployment.  

One dimensional gel electrophoresis of individual haemolymph samples identified a 

protein band of interest which was present most often in the samples collected after 

exposure to the MSX infected environment.  Subsequent MS analysis of representative 

samples of this band identified actin as the most likely identity, and band presence was 

found most abundant at the two post-deployment sample times in light and medium 

intensity classes and saw a significant increase in abundance in the final sample of the 

high intensity class.  Similarly, zymography analysis identified a series of high molecular 

weight protease bands (140-200kDa) found in samples collected pre-infection and 

occurring most often in those individuals that went on to develop high intensity 

infections. Lysozyme activity varied widely among intensities and across sample times 

while alkaline phosphatase activity increased significantly over time within low medium 

and high intensity class groupings.  This approach to the study of susceptible individual 

hosts over the course of exposure and infection with H. nelsoni has the potential to 

provide new insight to this host parasite system. 
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4.2 Introduction 

MSX along the Eastern Seaboard 

Haplosporidium nelsoni, is thought to have first been introduced to the eastern United 

States through transfer of its natural host species, Crassostrea gigas in the 1950s from the 

west coast of the U.S.A. (Burresson and Ford, 2004).  It was first detected in Crassostrea 

virginica in Delaware Bay in 1957, and within a few years had spread to Chesapeake 

Bay.  Although the spread of MSX now encompasses the bulk of the eastern seaboard of 

the United States, it has been associated with disease and severe mortality in only those 

areas in which it appears that the correct environmental conditions are met for the 

parasiteÕs proliferation. These include temperature and salinity, which seem to regulate 

the progression of disease.  Ranges of 5-20¡C have been suggested as the typical range in 

which disease occurs, likewise, a salinity of 15 psu is required for initial infection and a 

range of 18-20 psu is most likely to converge with high mortality and overall success of 

the parasite (Haskin and Ford, 1982; Burreson and Andrews, 1988). Parasite proliferation 

is highest at salinities above 20 psu (Andrews, 1968) and H. nelsoni does not survive in 

salinities below 10 psu (Ford, 1985; Ford and Haskin, 1988). The parasite is spore 

forming and is most commonly identified within oyster tissues in the stage of multi-

nucleated plasmodia.  It is thought to initially enter oysters of any age within the gill and 

mantle tissues and as the disease progresses it spread to other tissues, and can commonly 

be found in very intense infections in the digestive gland.  The complete life cycle has not 

been characterized and it is unclear whether the parasite incorporates any or multiple 

intermediate hosts into its proliferation in any given estuary.  The annual cycle of 

infection in the Chesapeake has been well documented with oysters first becoming 



 109 

infected in early summer with associated mortalities peaking in late summer and early 

fall (Andrews, 1966; Ford, 1985; Burreson and Ford, 2004).  In late fall prevalence and 

mortalities decrease with surviving oysters harbouring  low level intensity infections that 

lead to a wave of fresh mortality in the spring.  The annual cycling suggests a correlation 

of increased parasite abundance and resultant mortalities during summer drought 

conditions and subsequent decreases associated with spring freshets (Burreson and 

Andrews, 1988; Burreson and Ragone-Calvo, 1996). 

Perkinsus marinus is another protozoal pathogen found in Crassostrea virginica in the 

Chesapeake (Mackin 1950).  It is often found to occur following the infection wave of 

Haplosporidium nelsoni, with the parasite infecting oyster haemocytes from late summer 

into the fall.  This parasite seems particularly adept at causing detrimental effects in the 

eastern oyster, while Crassostrea gigas and Crassostrea ariakensis seem to deal better 

with exposure and infection. There has been some evidence of specific C. virginica anti-

proteolytic activity targeting parasite proteases in lab investigations (Faisal et al., 1999).  

It would appear that there are certain defenses occurring within the haemocytes and 

plasma that may indicate how and why certain infections are more successful than others.  

While Haplosporidium nelsoni once established in its host is found to occur within the 

tissues, previous protein studies have established that tissue analysis leads to a diverse 

array of proteins profiles with inherent individual variability. In contrast, studying 

Perkinsus and its effects through targeting the haemolymph has shown some promise in 

identifying proteins and activities of interest (Faisal et al., 1998; Oliver et al., 1999a,b, 

2000; Chu et al., 1993, LaPeyre 1995, Chu and La Peyre, 1993a,b; Garreis et al., 1996).  

One measure used to study changes in constituent proteins found in biological samples is 
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protein electrophoresis. In one dimensional gel electrophoresis proteins are treated in 

order to unfold their native shape and are then separated based on size (molecular 

weight).  With two-dimensional gel electrophoresis, proteins are first separated based on 

isoelectric point (pI) a point at which their net charge is zero in their natural structure and 

then further separated along molecular weight as in one dimensional gels (OÕFarrell, 

1975).  Molecular weight is determined primarily by the amino acid sequence of the 

protein and the isoelectric point is determined both by the charge of the amino acids 

found in the protein as well as in the post translational modifications impacting overall 

net charge.  Assessment of proteins in  a sample using these methods provides a diverse 

profile allowing for the determination of the number of proteins as well as relative 

concentration of these in a sample (based on band intensity).  These profiles can be a 

signature of a particular cell type or tissue and changes in this signature can be affected 

by disease, physiological stress , nutritional status, developmental stage, and 

environmental fluctuations.  

As seen in Perkinsus sp. and Urastoma cyprinae (Brun et al., 2000) infections, proteases 

appear to play key roles in host parasite interactions.  Proteases occur in all organisms 

breaking down proteins through hydrolysis of peptide bonds between amino acids in a 

polypeptide chain.  Physiological functions include digestion of protein as food, to more 

regulated cascades effecting complement, apoptosis, blood clotting and the invertebrate 

prophenoloxidase activation (Morrissey, 1998; Cho, 2002). In response to physiological 

changes, proteases can trigger rapid shifts in metabolic and immune functions in within 

an organism. 
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Parasite derived proteolytic enzymes can aid in infection through penetration and 

digestion of host tissues (Sung and Dresden, 1986; McKerrow, 1987, 1989; Knox and 

Jones 1990; Berasain et al., 1997; Perkins et al., 1997) as well as serve to evade the 

actions of the hostÕs immune response (Ellis et al., 1990; Kamata et al., 1995; Garreis et 

al., 1996). 

 

Other enzymes also play key roles in the host-pathogen interaction. Within the innate 

immune system, lysozyme has been identified as a key enzyme that catalyzes the 

hydrolysis of 1, 4-beta-linkages shared between N-acetylmuramic and N-acetyl-D-

glucosamine residues found in peptidoglycan of bacterial pathogens (Jolles, 1996).  In 

marine species, lysozyme is measured mainly in serum or plasma reflecting the 

proinflammatory phagocyte response (Lie et al., 1989, Saurahb and Sahoo, 2008; Fange 

et al., 1976). Specifically in mollusks, lysozyme has been characterized from a number of 

species (Xue, et al., 2010). Details of specific action within a given species nor its 

optimal conditions (particularly the pH range of activity within these systems) have not 

been fully characterized. 

Alkaline phosphatase has been described from many groups of organisms as an enzyme 

whose action removes phosphate groups from proteins and other molecules including 

nucleotides in basic environments (Crofton, 1982). The role of alkaline phosphatase in 

immune function is not clearly understood, though in a number of organisms and disease 

interactions its activity has been reported as altered in response to infection.  In 

molluscan research, alkaline phosphatase activity has been studied in relation to disease, 
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chemical contaminants and natural physiological composition (Xue and Renault 2000; 

Faisal, 2000; Cima et al., 2000; Evtushenko et al., 1984) 

In order to investigate protein interactions within this host parasite system and eliminate 

as much individual variability as possible, protein comparison of haemolymph from 

individual oysters at different time points would help identify protein changes related to 

infection over time.  Oysters collected from Rappahanock River system, which is free of 

Haplosporidium nelsoni and displays only sporadic infections of Perkinsus marinus, 

were bled and subsequently released into the York river for field infection and then were 

used to track protein changes over time and with exposure to both parasites.  

Haemolymph collected after exposure and related to diagnostic determinants (prevalence 

and intensity data for each parasite and in each individual oyster) allowed variability to 

be controlled so that protein and enzyme differences to be more accurately studied. 

Although this study relies on field samples (allowing for dual infections as well as 

environmental factors to have an impact), it can provide insight into changes over time in 

individuals that may be involved in one or both of these devastating disease processes. 

 

4.3 Materials and Methods 

4.3.1 Sampling  

Oysters (n=100) were collected over two sampling seasons from the Rappahannock River 

system using a mechanical dragging fork.  Each oyster was washed and labeled with 

either nail polish number (2006) or numbers epoxied to their shellsÕ (2007).  Once 

labeled, each oyster was measured and their shells were notched using a circular saw so 

that an aliquot of haemolymph (1.0 ml) could be bled and put directly on ice.  Bled 
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oysters were then deployed in vexar mesh bags (50 per bag) in the York River adjacent to 

the Virginia Institute of Marine SciencesÕ Gloucester Point research station, for field 

infection. In the 2006 field season oysters were deployed in May and subsequently 

retrieved for processing in August 2006.  In the 2007 field season, oysters were deployed 

in May and retrieved in July 2007, with an additional aliquot of haemolymph collected 

two weeks post deployment, resulting in three haemolymph samples (1-na•ve oysters, 2- 

two weeks after field deployment, and 3- two months after field deployment) collected 

from each individual oyster in this second year of field infection. 

4.3.2 Oyster Processing  

Upon collection each oyster was thoroughly washed free of fouling organisms and 

examined for obvious signs of morbidity.  Those that were gaping and dead were 

separated and viable oysters were measured and put forward for processing.  Oysters 

were re-notched using a circular saw and haemolymph bled from their cardial cavity.  At 

this final sampling, all the haemolymph was drained from each individual and the oysters 

were shucked and tissues collected aseptically.  Cross sections of mantle, gill and 

digestive gland were collected and placed in DavidsonÕs fixative for histology, 100% 

ethanol for PCR and frozen at -80¡C for protein analysis 

4.3.3 Histology  

Samples of digestive gland, gill and mantle collected from individual oysters were placed 

into labeled histology cassettes and preserved in DavidsonÕs AFA for at least 24 hours.  

Once fixed, the tissues were subsequently embedded in paraffin, sectioned 5-6um and 

placed on slides and stained with hematoxylin and eosin (H&E).  Stained slides were read 

by the histopathologist of the VIMS shellfish research laboratory and results of infection 
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(presence of any pathogens as well as intensity of MSX using OIE grading system), 

associated pathology, oyster sex and overall health were provided for analysis. 

4.3.4 PCR Diagnostics  

Tissue samples collected and stored in ethanol were subjected to DNA extraction using a 

Qiagen DNeasy tissue extraction kit and the manufacturerÕs protocol.  Total genomic 

DNA concentration was assessed using a Fisher GeneQuant Pro spectrophotometer 

reading at 260 nm. Template DNA was added to a PCR reaction mixture as outlined in 

the OIE diagnostic manual for Aquatic Disease.  Samples were then subjected to a 

temperature cycling protocol of initial denaturation of 94¡C for 4 minutes, 35 cycles of 

94¡C for 30 seconds, 59¡C for 30 seconds and 72¡C for 1.5 minutes, and final extension 

at 72¡C for 5 minutes (as per OIE diagnostic protocol for the detection of H. nelsoni) 

using a Fisher TECHNE TC-412  thermocycler. Amplified DNA was electrophoresed on 

a 1% agarose gel containing 10 ! l ethidium bromide adjacent to a bp molecular weight 

standard and subsequently viewed under UV light using a Fisher Alpha Innotech imager.  

Images were taken for each gel and annotated with sample numbers and amplicons of 

appropriate size (200 bp) compiled as positive diagnostic results. 

4.3.5 Prevalence and Intensity Determination 

Prevalence for each field seasonÕs final harvest was calculated for both PCR and 

histological diagnostic analysis.  Intensity of infection for each individual oyster was 

discerned through histology, using the OIE diagnostic manual for Aquatic Animal 

Diseases classifications including N Ð None, R Ð Rare, L Ð Low, L-M Ð Low-Medium, M 

Ð Medium, M-H Ð Medium High, H Ð High, S Ð Systemic, and LO- Localized.   
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4.3.6 Selection Criteria for Protein Analysis 

Each oyster was placed into an intensity class and compared amoung all classes.  Group 

one consisted of those individuals with a intensity class of no plasmodia observed (N), 

group two consisted of those individuals with intensity classifications of rare (R) and low 

(L), group three consisted of those individuals with intensity classifications of low-

medium (L-M) and medium (M) and group four consisted of those individuals with 

intensity classifications of medium-high (M-H) and high (H).   Nine individuals from 

each group were chosen at random to be run for protein profile comparison.  Each 

individual chosen had three representative haemolymph samples for comparison, one 

taken before deployment (#-1), one taken two weeks post-deployment (#-2) and a third 

taken at the end of field infection period 2 months post-deployment (#-3).  Differences 

were investigated both within an individualÕs haemolymph over time, as well as between 

each of the outlined intensity groups at any given sampling period.     

4.3.7 Assessment of Protein Concentration 

Haemolymph samples were thawed on ice and centrifuged at 15,000 x g for 10 minutes at 

4¡C to separate cells from serum.  Haemolymph supernatant (serum) was collected from 

and aliquoted into 100 ! l working stocks and returned to -80¡C for storage.  Protein 

concentration of each sample was determined using the Bradford protein assay (Bradford, 

1976) by adding 5! l of haemolymph of each sample in triplicate to a 96 well plate.  

Diluted commercial Bradford reagent solution (250 ! l BioRad protein assay dye reagent 

1:4 in deionized water) was added to each well including a positive and negative control 

and the plate read immediately at 590 nm on a THERMOmax microplate reader.  The 

resulting concentrations were calculated through comparison with a previously 
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established standard curve for the Bradford solution developed with dilutions (0.1-1.4 

mg/mL) of bovine gammaglobulin (BioRad).  The plate and resultant optical densities 

were analyzed using the program SoftMax Pro. 

4.3.8 Two-dimensional gel electrophoresis 

Individual haemolymph samples were selected for analysis using 2-D gel electrophoresis 

(2-DGE) based on the infection intensity and collection time as outlined above. Samples 

were transferred to dialysis tubing (3500 MWCO) and dialyzed for 24 h against 10 mM 

Tris-HCl pH 8.0.  Following dialysis, samples were centrifuged (4¼C at 200 g for 20 min) 

and the supernatant removed and frozen (-80¼C) until selected for analysis. Samples 

containing 200 µg of total protein were diluted 1:2 with rehydration buffer (6 M urea, 2 

M thiourea, 2% CHAPS) containing 20 mM dithiothreitol (DTT) and 0.5% carrier 

ampholytes and added to 18 cm Immobiline dry strips pH 4Ð10 (Amersham-Pharmacia, 

Uppsala, Sweden). Isoelectric focusing in the first dimension was obtained using a 

Multiphor II system (Amersham Pharmacia) run at 30 V for 10 h, then increased to 8000 

V over a 6 h period and held at 8000 V for 3 h. The sample strips were initially 

equilibrated for 15 min in 50 mM TrisHCl pH 8.8, 6 M urea, 30% v/v glycerol, 2% SDS, 

65 mM DTT, followed by 15 min in 50 mM TrisHCl  pH 8.8, 6 M urea, 30% v/v 

glycerol, 2% SDS, 135 mM iodoacetamide. For the second dimension, strips were then 

laid upon and run in a 1 mm thick, 14% SDS-PAGE gel at 2100 Vh (116.7 V * 18 h). 

Precision standards (Bio-Rad,) were employed in the second dimension gel to aid in 

estimation of protein molecular mass. Gels were then silver stained (Swain and Ross, 

1995) and imaged in the GS800 BioRad densitometer for comparison of profiles. 
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4.3.9 One-dimensional gel electrophoresis 

A total of 5 µg (1:1 sample and 2X sample buffer solution 0.5 M Tris-HCl, pH 6.8, 

glycerol, 10% w/v SDS. 0.2% (w/v) Bromophenol Blue) of each representative sample 

was run on  10% polyacrylamide gels for 1.5 hours at 150V. Gels included samples from 

each intensity class at the three different time points. Gels were then silver stained (Swain 

and Ross 1995) adjusting the protocol to eliminate the use of glutaraldehyde in order to 

maintain protein bands suitable for use in Mass Spectrometry analysis. The resulting 

bands were viewed and scanned using an 800S BIO RAD densitometer imager. 

4.3.10 Band Selection and Mass Spectrometry Analysis  

Bands were assessed based on presence or absence between intensity groups or across 

time. A similarly sized protein band displaying consistent changes identified among the 

individuals were considered bands of interest and four representatives of this band were 

excised from the SDS-PAGE gels using a razor blade and aseptic conditions under a flow 

hood in order to minimize contamination of common environmental proteins and 

submitted for MS analysis. 

4.3.11 MS Identification of protein changes 

Excised proteins were placed in 1.5 mL microcentrifuge tubes, washed 3 times for 10 min 

with 100 µL of 50% acetonitrile (ACN) in 25 mM NH4HCO3 and dehydrated in 200 µL 

of 100% ACN for 10 min. Proteins were reduced with 200 µL of 10 mM DTT in 25 mM 

NH4HCO3 at 56 ¡C for 1 h, followed by alkylation in 200 µL of 25 mM NH4HCO3 

containing 55 mM iodoacetamide darkness at room temperature for 45 min. The reduced 

and alkylated gel pieces were washed 2 times with 100 µL of 25 mM NH4HCO3 and 

50% ACN containing 25 mM NH4HCO3 for 10 min. Gel pieces were dehydrated with 
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200 µL of 100% ACN for 20 min and residual ACN was removed in a Speedvac for 10 

min. Gel pieces were rehydrated with 20 µL of 12.5 ng mL"  1 trypsin (Promega, 

Madison, WI, USA) in 25 mM NH4HCO3 and incubated at 37 ¡C overnight. Tryptic 

peptides were eluted from the gel with 2 successive 20 µL volumes of 5% formic acid 

and concentrated in a Speedvac. (modified from Ebanks et al. (2005)).  Following 

digestion, each sample was re-suspended in 20 µl of 0.5% formic acid. An aliquot of 3 µl 

of each sample was injected.  A 1.5 picomole BSA gel slice stained with colloidal 

Coomassie blue was digested in parallel with the samples as a control for the 

digestion and a 3 µl injection of 20 fmol/µl BSA solution digest was used to ensure 

proper operation of the LC-MS-MS system. The resulting peak spectra in MGF 

(MASCOT generic format) were searched in MASCOT against SwissProt and most 

likely protein similarities reviewed.  Protein score (-10*LOG10(P), where P is the 

absolute probability that the observed match is a random event, with a score of greater 

than 67 being significant (p<0.05)) along with peptide scores (probability for each 

matched peptide sequence) obtained through analysis were reported and compared for 

each band. 

4.3.12 Assessment of Proteolytic Activity 

Similar to preparation for protein determination, 5 µg of total protein was added to an 

equal volume of sample buffer solution (0.5 M Tris HCl, pH 6.8, glycerol, 10% w/v SDS. 

0.2% (w/v) Bromophenol Blue).  The resulting mixture was added to a 12% 

polyacrylamide gel containing 1% gelatin, and run at 150V for approximately 1 h at 4¼C 

adjacent to a broad range prestained molecular weight marker (BioRad).  After 

separation, gels were subjected to three 10 minute washes at 4¼C with zymography wash 
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buffer (50 mM Tris-HCl, pH 7.5, 10% Triton X-100).  Gels were removed from wash 

buffer and placed into incubation buffer containing 50 mM MgCl2 and 6.25 mM CaCl2 

and incubated on a shaker at 30¼C for 19 h.  After incubation, gels were stained in 

Coomassie blue stain for 1 h and destained (40% methanol, 10% acetic acid) repeatedly 

until good contrast was obtained.  Gels were subsequently scanned using an 800S BIO 

RAD densitometer imager and resulting scans analyzed for proteolytic differences among 

intensity classes and over time. 

4.3.13 Assessment of Enzymatic Activity 

4.3.14 Lysozyme assay 

Samples (25 ! l) of individual oyster haemolymph, having previously been assessed for 

protein concentration, band differences and proteolytic activity were added to a 96 well 

plate in triplicate.  Buffer (40 mM NaH2PO4, pH6.2) was prepared fresh before each 

assay and 50 ! l added to each sample well.  The resultant mixture was incubated in the 

plate reader for 15 min at 30¼C.  Substrate (0.6 mg/ml lyophilized Micrococcus 

lysodeikticus, Sigma, in 40 mM NaH2PO4 buffer, pH 6.2) was also incubated separately 

at 30¼C for 15 min before adding 25 ! l to each well containing the haemolymph and 

buffer mixtures and the plate was then placed immediately into the THERMOmax reader 

at 30¼C.  The optical densities (OD) of samples were measured at 450 nm continuously 

(every 30 s) over one hour.  Results were obtained using the software SOFTMax Pro 

using the initial rate of the reaction to calculate activity. One unit of activity was the 

amount of enzyme that catalyzed the decrease in absorbance of 0.001/min. Negative (50 

µl buffer and 50 µl substrate) and positive (25 µl of chicken egg white lysozyme, 2500 

units/ml Sigma) controls were run alongside samples in triplicate for each plate. 
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4.3.15 Alkaline Phosphatase assay 

Samples (25 ! l) of individual oyster haemolymph, having previously been assessed for 

protein concentration, band differences and proteolytic activity were added to a 96 well 

plate in triplicate.  Buffer (100 mM ammonium bicarbonate, 1 mM MgCl2, pH 7.8) was 

prepared fresh before each assay and 55 ! l added to each sample well.  The resultant 

mixture was incubated in the plate reader for 15 min at 30¼C.  Substrate (4 mM p-

nitrophenyl phosphate in 100 mM ammonium bicarbonate, 1 mM MgCl2, pH 7.8) having 

been incubated separately at 30¼C for 15 min was added (20 ! l) to each well containing 

the haemolymph and buffer mixtures and the plate placed immediately into the 

THERMOmax reader at 30¼C.  The optical densities (OD) of samples were measured 

continuously (every 30 sec) over a one hour incubation at 405nm.  Results obtained using 

the software SoftMax Pro using the initial rate of the reaction to calculate activity, being 

defined as the amount of enzyme require to release 1 pM of p-nitrophenol product in 1 

min. Negative (80 µl buffer and 20 µl substrate) and positive (25 µl of alkaline 

phosphatase enzyme, Sigma) controls were run alongside samples in triplicate for each 

plate. 

4.3.16 Statistical Analysis 

Overall protein concentration was compared using a one way ANOVA to assess 

significant difference among intensity classes at each sample time as well as significant 

differences within intensity classes across the three sample times. Band presence in one 

dimensional SDS-PAGE gels were compared among intensity classes at each sample 

time as well as within intensity classes across the three sample times in paired analyses 

using the FisherÕs exact test. Similarly, proteolytic band presence was compared among 
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groups within the initial sample period with the Heavy intensity group being compared 

against all others using paired FisherÕs exact analyses for significance.  Differences in 

both lysozyme and alkaline phophatase activities were compared using a one way 

ANOVA to assess significant difference among intensity classes at each sample time as 

well as significant differences within intensity classes across the three sample times.  

4.4.Results 

4.4.1 Field Infection 

In 2006, na•ve oysters (n = 100) deployed into the York River all became infected with 

Haplosporium nelsoni, at 100% prevalence as indicated by PCR and 61.9% prevalence 

by histology (Table 1). These oysters were also infected with Perkinsus marinus with an 

overall prevalence of 100% by both PCR and RFTM and 57% by histology (Table 1). 

Mortalities attributed to the field infection were high (79%), with subsequent collection 

having occurred late in the season (May deployment and August collection) and likely 

confounded by the mixed infections found to occur in all those oysters that survived.  In 

2007, na•ve oysters deployed in the York River had an overall prevalence of infection 

with H. nelsoni of 100% by PCR and 88.6% by histology (Table 1).  The mortalities from 

the field infection for 2007 were far less (21%) likely because of the timing of collection 

(Deployment in May and collection in July) and because oysters were not infected with 

P. marinus which occurs later in the season after the peak of H. nelsoni infections in this 

environment (Table 1).   

4.4.2 Intensity Class Distribution 

Infection intensities as determined by histology in both 2006 and 2007 experiments 

ranged from Low to High (Figure 2) and contained infections that were Local, Systemic 
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as well as Multi Focal in presentation. The low number of survivors from the 2006 

sample disallowed for statistical strength in comparing individuals of differing intensities.  

Intensity classes from the 2007 sample were condensed to arrive at a comparative number 

of samples for protein and enzyme activity analyses (Figure 3). 

4.4.3 Protein concentration 

Overall average sample protein concentrations (2007) ranged from 1.48-2.21 ! g/! l 

(Table 2).  Standard deviations for the concentrations calculated among groups were 

rather high and indicative of overall variability among all samples.  Significant 

differences (p<0.05) were found within the None intensity group which had a 

significantly higher average protein concentration at the pre-infection sample time (2.21 

± 0.53 ! g/! l) (Table 2).  Average protein concentrations also differed significantly 

(p<0.05) among intensity classes at the final harvest collection with those within the high 

intensity group having the highest overall average (1.79 ± 0.25 ! g/! l) and the None 

group having the lowest (1.48 ±0.31 ! g/! l) (Table 2).  Both the Low and Medium 

intensity groups did not differ significantly over time, and among all the intensity groups 

no significant differences were found at the initial or two weeks post deployment samples 

times (Table 2). 

4.4.4 Protein Profiles Comparison 

4.4.5 Two-dimensional gel electrophoresis 

On 2D gels of haemolymph samples from the 2007 collection contained one particular 

protein in high abundance that masked the presence other proteins within a given sample.  

This was seen on gels in the presence of a large smear (centered around  pI 5-8 and MW 

40-48, Figure 4) Based on the pI and MW the protein was tentatively identified as 
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Dominin which is the major haemolymph protein identified in oyster haemolymph (Itoh 

et al. 2011).  The relative abundance of this protein compared with other proteins in the 

sample would have resulted in these other protein bands appearing at very low intensities 

or not at all. 

The remaining constituent proteins within individual samples were not easily viewed 

using this method as their overall concentration within the protein samples may not have 

be been enough to elucidate clear protein spots using this method. Because of the lack of 

abundant proteins for comparison, a one dimensional gel approach was identified as more 

appropriate for these samples.  

4.4.6 One-dimensional gel electrophoresis 

Intensity groupings based on histology (2007) were run adjacent to one another for 

comparison on each gel and banding patterns for each group showed both repetitive 

proteins and varied protein profiles. No one protein was consistently observed in all 

representatives from a particular intensity group (Figure 5).  However, when assessing 

the three sampling time points that were run for the representatives of each intensity 

class, those samples taken after field deployment (both at two weeks and two months) 

showed a consistent presence of protein band at ~40kD (Figure 5). This band was present 

in only 1 of initial haemolymph samples across all intensity classes 58% (21) of samples 

two weeks post deployment and 88% (32) of samples two months post deployment 

(Table 3). The associated band was found in 48% (13) of oysters in the none infection 

intensity class, in 59% (16) of oysters in low infection intensity class, 67% (18) of oysters 

in group three infection intensity class, and 26% (7) of oysters in high infection intensity 

class (Table 3).  The presence of this band differed significantly (p<0.05) when 
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comparing the initial and final sample times for the None intensity group (Table 3).  In 

both the Light and Medium intensity groups band presence differed significantly 

(p<0.05) when comparing the initial pre-infection samples with both subsequent sample 

times in which the band was more abundant. Within the high intensity group the final 

sample time displayed a significant (p<0.05) increase in the presence of this band when 

compared with the two initial samples taken from each individual of this group (Table 3). 

Within the second sample time, significant differences were found between the None and 

Medium, Low and High, and Medium and High intensity groups respectively (Table 4).  

Band intensities differed among proteins over the different infection intensity groupings 

(Figure 5), most notably the presumed Dominin protein appears less intense after field 

deployment in all intensity classes except the highest infection intensity class.   

4.4.7 MS analysis 

Protein identities for three of the four spots submitted for MS analysis yielded the protein 

actin as the most likely identity of the protein bands observed most consistently after field 

deployment (Table 5).  The MW of the band (~40 kDa) is consistent with the mass of 

actin (42 kDa) In spots 1, 3, and 4 a strong secondary identity was also suggested in the 

high protein and peptide scores garnered for the dominin precursor protein (Table 5).  

This secondary identity was the only protein identified as originating from the host 

species, Crassostrea virginica. Protein spot 2 yielded a weak similarity with a single 

peptide identified to a maturase-like protein, however, this sample was likely not of the 

best quality and thus yielded a questionable identity (Table 5).    
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4.4.8 Proteolytic activity 

Zymography gels assessing proteolytic activity in the haemolymph samples collected in 

2007 from individual oysters over time and across different intensity classes displayed 

overall similar profile with the presence of a 110 kDa protease band (Figure 6).  However 

a series of high molecular weight proteolytic bands (120 Ð 200 kDa) were observed only 

within the pre-infection initial harvest haemolymph samples and most notably 

overwhelmingly observed most often within those oysters that went on to develop high 

intensity infections (Figure 6). Comparisons of the presence of the 120-200 kDa 

proteolytic bands among the intensity classes yielded significant differences (p<0.05) 

when compared with the number of these bands found within the high intensity group 

(Table  6).    

4.4.9 Enzymatic activity 

Lysozyme activity was variable and did not differ significantly among the intensity 

groups or within the groups over time. (Table 7).  Alkaline phosphatase activity did not 

differ significantly across intensity classes at each of the three sampling times. However 

significant differences of alkaline phosphatase activity were identified within all of the 

infected intensity classes (Low, Medium and High) which all displayed an increase in 

activity over time (Table 8).  

4.5 Discussion and Conclusions 

Protein profile and activity differences were noted in conjunction with both infection 

intensity as well as over time with field exposure of na•ve oysters in the York River 

system in both 2006 and 2007.  Targeting haemolymph samples from oysters over time 

(before, after initial exposure period and after two months of exposure) in an area in 
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which seasonal disease pressures are documented and closely monitored allowed these 

protein changes to be observed. Given the unreliable and variable results garnered from 

previous work in attempting to target groups of similar hosts in order to assess protein 

impacts, it is recommended that testing single individuals over time using non-lethal 

sample collection allows more readily for comparative study of MSX in eastern oyster 

hosts.   Haemolymph is an appropriate target for testing in that it allows an individual 

marked oyster to be tested several times over the course of infection. When tissues are 

analyzed, although these are the centre of disease action as seen through histological 

analysis, the sacrifice of the individual is necessary.  The individual variability seen  in 

mollusks has been a challenge for proteomic research of disease, in that comparisons 

made between individuals from the same environment but different disease states (or 

infection intensities) yielded far too broad a spectrum of proteins observed among both 

disease state groups as well as those expressing a similar disease state (Huffman and 

Tripp, 1982; Auffret, 1988; McCormick-Ray and Howard, 1991; Chu and La Peyre, 

1993; Ford et al., 1994; Oliver and Fisher, 1995; Bayne, 1998).  In the current study, 

taking several samples of haemolymph from the same individual over time allowed for 

some control over individual variability.   Because diagnostic testing requires the 

sacrifice of the animal in order to test tissues through PCR analysis and the observation 

of tissues through histological analysis, it is unclear what the disease status of the 

individual oysters used in this study was at the time of the second haemolymph sample 

(taken two weeks after initial deployment).  Similarly, the overall health of the oysters 

from the initial sample taken after collection from a parasite-free location was not able to 

be discerned.   Despite these unknowns, the current work suggests several interesting 
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changes in the haemolymph proteome associated with infection intensity and exposure 

over time.   

The comparison of overall protein concentration displayed a significant decrease in those 

individuals who showed no evidence of infection with MSX at the final sample point.  

Many studies of H. nelsoni have focused on humoral factors in oysters and have reported 

declines in free amino acids (Feng and Canzonier, 1970) as well as total serum protein 

concentrations associated with systemic infections (Ford 1986). Overall serum protein 

concentrations have been reported to be slightly lower in P. marinus infected oysters 

compared with uninfected individuals, though not shown to be significantly different 

(Chu and LaPeyre,1993; LaPeyre et al., 1995), and some reports have indicted no 

differences seen in oysters (Chu and LaPeyre, 1989, 1993). In clams infected with 

Perkinsus atlanticus, a serum protein increase that could be due to specific polypeptides 

was reported by Montes et al. (1996, 1997).  Decreases in overall protein were noted in 

the mollusk Milanese obsolete when parasitized with larval trematodes (Cheng et al., 

1983).   Marteiliodes chungmuensis infections have been found to reduce overall serum 

protein concentrations (Park, 2003; Park, 2005). Barber et al. (1988) also showed a 

decrease in protein content of those oysters carrying systemic MSX infections. Ford 

(1986) compared haemolymph protein concentration between susceptible and resistant 

oyster groups challenged with MSX and noted a decrease in those with the heaviest 

infectons. The infected oysters in this study had no significant changes in overall 

haemolymph protein concentrations.  The decrease seen in individuals showing no 

histological evidence of infection could be due to energy draws and protein migration to 

other regions to aid in increased immune defenses or other unknown physiological needs 
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of these particular hosts.  A similar decrease has been demonstrated in shrimp with blood 

proteins being diverted before moults in order to produce a new exoskeleton 

(Terwillister, 1999). 

The comparison of haemolymph protein profiles across intensity classes over time 

identified a consistently observed protein band in all intensity groups occurring in the two 

sample points post-deployment within the MSX positive environment.  Bands of this 

protein differed significantly with increased abundance over time in all infection intensity 

groups and between groups with the high intensity class showing significantly less 

individuals with this band.  MS analysis identified actin as this band of interest which 

was surprising given its ubiquitous nature as an intracellular protein.  Actin is a 

component of micro- and thin filaments utilized in the structure and motility of cells.  

Actin is involved in cellular functions including cell motility, shape, division, 

cytokinesis, muscle contraction, signaling, and the creation of cell junctions (Pratt et al., 

2004). The haemolymph preparations used were cell free lysates so an increase in actin 

within these samples could indicate the breakdown of cellular tissue associated with 

disease.  In an immune context, there is evidence of a role for the release of cytoplasmic 

actin such as suggested in neutrophil NET defenses (Neeli et al., 2009). In finfish mucus, 

actin has been found at significant levels and may indicate an alternate role in organisms 

than those traditionally identified (Easy and Ross, 2009).     

The presence of high molecular weight proteases within the initial sample collection was 

significantly higher in those individual oysters that went on to develop high intensity 

infections with H. nelsoni.  This protease activity as identified on zymograms of the host 

oyster haemolymph occurred only in the initial sample collection and therefore is not a 
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direct response to MSX infection. The finding that its abundance is greatest in those 

individuals who develop high intensity infections suggests that these individuals have a 

particular susceptibility to MSX specifically or to disease in general.  This protease may 

indicate the presence of an underlying stressor from the collection environment which 

undermined the oystersÕ ability to deal with the subsequent assault from MSX.  No 

consistent proteolytic changes were noted among infection intensity groups after 

exposure to MSX.  In Perkinsosis, several studies have identified and investigated 

proteases involved in parasite invasion and establishment (LaPeyre et al., 1995a; Faisal et 

al., 1999; Garreis et al., 1996; Oliver et al., 1999; Tall 1999) as well as antiprotease host 

defense (MacIntyre et al.,  2003; Faisal et al., 1998; Oliver et al., 1999, 2000; Romestead 

et al., et al., 2002; Faisal 1999; Montes et al., 1995 1996 & 1997), so the lack of evidence 

for proteolytic activity involved in active infection with MSX in this study is surprising.    

Lysozyme activity assessed over time within intensity classes as well as between classes 

at each sample time showed high variability and no significant trends associated with 

intensity or exposure to MSX over time.  Lysozyme activity has been assessed in the 

Perkinsosis disease system with varied results either indicating increased (Chu and Le 

Peyre 1993a) or decreased activities (LaPeyre et al., 1995b;  Garreis et al., 1996), or no 

association with disease (Chu and LaPeyre, 1989, 1993; Chintala et al., 1984;  Chu et al., 

1993).  Mussel lysozyme had an inhibitory effect on P. marinus growth in vitro, far 

greater than serum lysozyme isolated from C. virginica (Anderson and Beaven, 2001). 

The role of environmental factors on molluscan haemolymph lysozyme levels is 

uncertain. The presence of high and low outliers in each intensity class impacted the 
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overall averages in this study accounting for much of the variability in lysozyme 

measures observed.   

Average alkaline phophatase was similarly assess over time within and between intensity 

classes and increased significantly in each of the intensity classes, with the highest 

activities found at the final sample after two months deployment in an MSX endemic 

area.  The group that showed no histological evidence of infection with H. nelsoni (but 

positive through PCR diagnosis) displayed only a slight increase while the other intensity 

classes had more pronounced increases in activity.  Those in the low intensity class had a 

high initial activity at the time of collection with a marked decrease when sampled two 

weeks after deployment, followed by an increase at the final sample point.  While 

specific roles for alkaline phosphatase activity are unknown within this system, there is 

evidence of a role for parasite-derived acid phosphatase in host immune response (Volety 

and Chu, 1997) altering bivalve cellular defense activity by disruption of phosphoproteins 

and inhibition of superoxide anion production.  More generally, an increase in alkaline 

phophatase is thought to indicate stress or a trigger for an immune response (Ross et al., 

2000; Iger and Abraham, 1990, 1997).  The evidence of increases in relation to MSX 

disease infection intensity is demonstrated here suggesting a role for alkaline phosphatase 

in the host parasite interaction.  

This work has identified several changes in the host proteome in relation to infection and 

H. nelsoni parasite intensity.  The comparison of the same individual host over time, as 

well as targeting haemolymph as the tissue of study, allowed for reduced protein 

variability and therefore stronger comparative analysis. Some of the changes observed 

such as actin, may simply be a reflections of changes associated with other factors found 
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in the new environment in which the susceptible oyster were transferred. However, due to 

the necessity of relying on field infections it is not clear what contribution each of these 

factors may have had on the haemolymph proteome changes observed.  Separating 

oysters into disease intensity classes proved an effective tool for comparison, allowing 

for the investigation to cover the spectrum of natural disease states.  Previous work 

targeting disease intensity extremes (no indication of MSX infection versus heavily 

infected individuals) likely missed the most informative subset of disease processes, 

encompassing those individual hosts with energy and thus protein molecules devoted to 

active control and response to parasite infiltration and infection.  Those individuals with 

the heaviest infections are likely spent with regards to immune defense molecules 

focusing energetics on sustaining basic biological functions.  The identification of a 

potential proteolytic protein marker linked to a specific stressor or disease susceptibility 

provides an opportunity to study this interplay. Validation of this potential marker could 

aid in the selection of MSX-resistant strains in other locations where introduction of 

oysters outside of the region may be problematic and thus, could be of great use to 

industrial or restorative practices in identifying stocks of choice individuals.  
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Table 1:Prevalence of infections with MSX and Dermo as determined by histology and 
PCR diagnostics at the final harvest collection of oysters from the study site at lower 
York River, Virginia, USA from experimental trials held in 2006 and 2007. 2007 oyster 
collection occurred prior to infection with Dermo. 
 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
Year 

 
Number of 

Oysters 
Deployed 

 
Mortality % 
(survivors) 

Prevalence of infection % 
MSX 

Haplosporidium nelsoni 

Prevalence of Infection % 
Dermo 

Perkinsus marinus 

     
Histology PCR Histology PCR 

2006 100 79% (21) 62% (13) 100% (21) 57% (12) 100% (21) 

2007 100 21% (79) 88.6% (70) 100% (79) - - 
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Figure 2: Distribution among intensity classes as determined through histology at final 
harvest of experimental oysters deployed in 2007 within the lower York River, 
Gloucester Point, Virginia, USA. 
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Figure 3: Intensity class groupings for analysis of protein changes, proteolysis, and 
enzymatic activities of oysters over course of 2007 field exposure to MSX. 
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Table 2: Average protein concentration (µg/µl) among the intensity classes of oysters 
deployed in 2007 within the lower York River, Gloucester Point, Virginia, USA at three 
sampling points. P-values of One way ANOVA analysis testing significant differences 
within intensities over time and also among intensity classes at each time point provided 
with * denoting significance (P<0.05). Average protein concentration decreased 
significantly over time within the group with no evidence of infection (None) group and 
was also significantly lower in this group compared to all other intensity groups at the 
final sampling point (2 months post-deployment). 
 

 

 

 

 
 

 

 

Intensity N Pre-Deployment Post-

Deployment 

(2 weeks) 

Post-

Deployment 

(2 months) 

P-value 

None 9 2.21± 0.53 1.61± 0.42 1.48± 0.31 0.0033* 

Rare-Low 27 1.82± 0.49 1.59± 0.34 1.68± 0.19 0.0562 

Low-Medium, 

Medium 

27 1.67± 0.45 1.60± 0.31 1.62± 0.26 0.7165 

Medium-High, 

High 

17 1.80± 0.59 1.81± 0.20 1.79± 0.25 0.9834 

P-value - 0.0604 0.1007 0.0231* - 
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Figure 4: Protein profile of haemolymph protein (200 ug) collected from one individual 
oyster run on a two dimensional electrophoresis gel (14%) and silver stained for analysis.  
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Figure5: SDS Page gel of haemolymph from four individual oysters deployed within the 
lower York River, Gloucester Point, Virginia, USA. One individual representing each 
intensity class (N: None, R-L: Rare and Low, LM-M: Low-Medium and Medium, MH-
H: Medium-High and High) at each of the sampling points (1-Initial collection, 2- two 
weeks post deployment in experimental field conditions, 3 Ð final harvest from field). 
 

 

 

 

 

 

 

N R-L L-LM MH-H 

    1 2  3  1   2 3  1  2   3 1  2 3  

250 
150 
100 
75 

50 

37 
25 
20 
15 

* 

KDa 



 146 

 
 
 
 
Table 3: Abundance of protein band of interest among intensity classes and across 
sampling times with the comparison of abundance over time within intensity classes 
using the Fisher exact test, * denotes significance (p<0.05) 
 

 

 

 

 

 

 

 

 
 

 

 

 

Number samples with protein band  (~40kD) / 
total samples 

Comparison with over time 
FisherÕs Exact p-value 

 
 
 

Intensity 
Class 

 
T1:Pre-

deployment 

 
T2:Two weeks 

post-deployment 

 
T3:Two months 
post-deployment 

T1 
- 

T2 

T1 
- 

T3 

T2 
- 

T3 
None 1/9 4/9 8/9 0.2941 0.0034* 0.1312 
Rare-Low 0/9 7/9 9/9 0.0023* <0.0001* 0.4706 

Low-
Medium 
&Medium 

0/9 9/9 9/9 <0.0001* <0.0001* - 

Medium-
High & High 

0/9 1/9 6/9 1.000 0.0090* 0.0498* 
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Table 4: Comparison of abundance of protein band of interest among intensity classes at 
the final sample point, two months post deployment using a FisherÕs exact test, * denotes 
significance (<0.05). 
 

Intensities compared Comparison between intensities at T3 
FisherÕs Exact p-value 

None - Low 0.3348 
None - Medium 0.0294* 
None - High 0.2941 
Low - Medium 0.4706 
Low - High 0.0152* 
Medium - High 0.0004* 
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Table 5: Identities yielded from Mass Spectrometry analysis and subsequent Mascot 
search of SwissProt database.  Each excised band reports a most likely identity based 
upon overall protein score (-10*LOG10(P), where P is the absolute probability that the 
observed match is a random event, with a score of greater than 67 being significant 
(p<0.05)), number of similar peptides and individual peptide scores, predicted mass and 
original species from which protein was described.  Secondary protein matches are also 
provided. 
 

Spot Intensity 
class 

Sample 
Time 

ID Protein 
Score 

Peptides Species Mass 

1-
cytoskeletal 
actin IIIa 

114 3  -34 
     -57 
     -29 

Strongylocentrotu
s purpuratus 

42024 1 None T3 -final 
harvest 

2- dominin 
precursor 

59 2  -58 
    -59 

Crassostrea 
virginica 

21270 

2 Rare-
Light 

T3 -final 
harvest 

1-maturase-
like protein 

61 1  -61 Adesmia 
volckmannii 

61546 

1-actin 127 3  -46 
    -47 
    -34 

Pterosperma 
cristatum 

38554 

2-actin 123 3  -46 
    -47 
    -39 

Oxystele tigrina 24943 

3 Light-
Medium 
& 
Medium 

T2 Ð Two 
weeks 
post 
deployme
nt 

3-dominin 
precursor 

114 3  -27 
    -76 
    -38 

Crassostrea 
virginica 

21270 

1-
cytoplasmic 
actin 

343 8  -43 
    -57 
    -42 
    -28 
    -22 
    -37 
    -64 
    -55 

Dreissena 
polymorpha 

42168 4 Medium-
High & 
High 

T3 -final 
harvest 

2- dominin 
precursor 

85 3 -40 
   -55 
   -31 

Crassostrea 
virginica 

21270 
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Figure 6: Zymography gel (A)  of haemolymph samples from three individual oysters 
representing three intensity classese (L- Rare-Low, M- Low Medium- Medium, and H Ð 
Medium-High and High) sampled at three time points. Zymography gel (B) of 
haemolymph samples from eight individual oysters representing four intensity classes (R-
Rare, L-Low, M-Medium and H- High) all taken from the initial sampling time, pre-
deployment exposure to MSX infected water system.  Arrow indicates ubiquitous 110 
kDa protease band, arrowheads identify high molecular weight bands (140-200 kDa). 
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Table 6: Number of individual oysters with high MW (140-200 kDa) proteolytic bands in 
each intensity class, from the first sample collection pre-infection in 2007. Tests for 
significance between numbers of bands found in highest intensity class compared with all 
other intensity classes are provided, * denotes significance p<0.05.   
 

 
 
 

Intensity 
Class 

 
Number of pre-

deployment 
samples with 

proteolytic bands  
(~150kD) / total 

samples 

 
Comparison with 

Medium-High 
& High Intensity 

Class 
Chi Square, df, p-

value 

 
Comparison with 

Medium-High 
& High Intensity 

Class 
FisherÕs Exact p-

value 
None 0/9 9.375, 1, p=0.0022* p= 0.0028* 
Rare-Low 1/16 11.22, 1, p=0.0008* p= 0.0021* 
Low-
Medium & 
Medium 

1/16 11.22, 1, p=0.0008* p= 0.0021* 

Medium-
High & 
High 

10/16 - - 
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Table 7: Average Lysozyme activity (units of activity/ug of protein) from haemolymph 
taken from oysters belonging to each intensity class at each of the three sampling points 
(1-pre-infection, 2- two weeks post deployment in experimental field conditions, 3 Ð final 
harvest from field). P-values of One way ANOVA analysis testing significant differences 
within intensities over time and also among intensity classes at each time point provided 
with * denoting significance, p<0.05. 
 

Intensity Pre-Deployment Post-Deployment    
(2 weeks) 

Post-
Deployment  
(2 months) 

P-value 
(over time) 

None 772.2±475.9 702.4±556.5 593.4±435.7 0.7422 
Rare (3) 438.5±307.8 583.2±478.9 635.5±582.5 0.8711 
Low 905.4±858.3 1374.5±1893.2 705.4±555.3 0.3800 
Low/Medium 1483.3±1787.6 795.2±800.1 971.1±927.3 0.6221 
Medium 1140.8±727.3 629.0±529.2 742.3±585.9 0.1452 
Medium/High 817.0±792.6 836.8±858.8 661.7±510.2 0.8592 
High 799.4±651.4 466.3±249.0 502.8±449.2 0.3810 
P-Value 
(among intensities) 

0.6209 0.5794 0.8393 - 
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Table 8: Average Alkaline Phosphatase activity (units of activity/ug of protein) from 
haemolymph taken from oysters belonging to each intensity class at each of the three 
sampling points (1-pre-infection, 2- two weeks post deployment in experimental field 
conditions, 3 Ð final harvest from field). P-values of One way ANOVA analysis testing 
significant differences within intensities over time and also among intensity classes at 
each time point provided with * denoting significance, p<0.05. 
 

Intensity Pre-
Deployment 

Post-
Deployment    
(2 weeks) 

Post-
Deployment  
(2 months) 

P-value 

None 0.0002±0.03 0.001±0.07 0.103±0.07 0.0557 
Rare - Low 0.407±0.03 0.002±0.04 0.767±0.66 0.0003* 
Low/Medium - 
Medium 

0.016±0.04 0.334±0.97 3.10±3.7 0.0125* 

Medium/High 
Ð High 

0.073±0.14 0.020±0.04 1.94±1.7 0.0004* 

P-Value 0.3935 0.4998 0.0916 - 
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Chapter 5:  

General Discussion 
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Review of Research Goals and Findings 

The study of host parasite interactions of parasitic protozoans involves the use of 

specialized techniques in order to obtain information about each system.  In depth study 

can be achieved through manipulation of parasitic species in the laboratory through the 

use of culture or the establishment of models fulfilling lifecycle and environmental 

requirements allowing for experimental infection of hosts to be studied.  In the case of 

Haplosporidium nelsoni, study relies on field investigation or the culture of wild infected 

oysters because the parasiteÕs life cycle remains unknown and the organism cannot be 

cultured in vitro nor transmitted in vivo experimentally.   Given these limitations, the 

diagnosis of H. nelsoni infections is of particular importance in order to properly identify 

the parasite and assess appropriate hosts for use in the study of the disease relationship.  

The biochemical interactions between parasites and their hosts can be incredibly 

informative as they are filled with specific parasite factors relating to initial infiltration, 

infection, disease progression, as well as defense strategies employed by both the host 

and parasite during this interplay.  Biochemical interactions can be investigated using 

several methods, from holistic, proteomics approaches that examine changes in all of the 

constituent proteins found in a tissue or sample type in response to a change or 

investigated using a more narrowly defined set of parameters, such as specific enzyme 

activities.  Total protein profiles of specific tissues collected from the host can be 

assessed through techniques such as SDS-PAGE, which separates all the proteins in a 

given sample based on molecular weight or 2-DGE which utilizes this separation 

technique along with the added benefit of separation of proteins based on their isoelectric 

point.  As well, electrophoretic methods may be useful in examining enzyme profiles. 
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More specifically, proteolytic activity of individual samples can be assessed through the 

using zymography and additionally specific enzyme activities can be measured using 

substrate assays.  The combination of the protein approaches outlined, when targeted 

towards a given tissue, provide a comprehensive investigation of the proteome changes 

within the host parasite interaction. 

With the spread of H. nelsoni to Canadian waters in the Bras dÕOr Lakes, the current 

investigation first assessed the spread and detection of this parasite within host oyster, 

Crassostrea virginica, populations in three localities in this new landscape of disease, the 

Bras dÕOr Lakes. Secondarily, this study set out to investigate protein interactions in this 

host-parasite system in order to identify potential biomarker targets involved in 

populations with and without disease to gain further information about this pathogen and 

to aid in understanding of the disease process that follows infection.  The host 

populations sampled were also used to assess the use of infected and uninfected tissues as 

targets for protein and enzymatic analysis with the goal of identifying proteins specific to 

the disease state. As part of the study, field experiments were carried out within the 

established disease environment of Chesapeake Bay, Virginia, in order to describe 

protein profiles of host haemolymph comparing na•ve and infected samples in order to 

identify any changes correlating with disease.  

 

Contributions and limitations 

The populations studied in the Bras dÕOr Lakes provide a snapshot of MSX disease 

spread within a new environmental range.  The continued evidence of spread and 

infection within the Lakes further illustrates that study of this parasite within this 
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particular population is needed.  The initial goal of the work within the Lakes was to 

identify the population at risk and to illustrate how widespread the pathogen may have 

become in just a few short years since its initial detection.  Sampling of large numbers at 

sites in which the parasite had not yet been detected or had limited diagnostic positives in 

previous years had been expected to show low prevalence at these locations displaying 

the spread of the pathogen had likely occurred throughout the lakes system.  Test results 

however provided an unexpected outlook of MSX within the Lakes.  Nyanza Bay had 

continued infection at historic levels ever since introduction of the parasite.  East Bay, 

which had been targeted as an area likely to have low prevalence levels, instead had a 

prevalence similar to that seen in Nyanza, despite the appearance of a healthy multi-year 

class population at the time of collection. Most interesting was the collection made at 

Lynches River, which showed no indication of infection when assessed through 

histology, but had a high prevalence (28%) when PCR was carried out.  This large 

discrepancy among the two diagnostics tests used to identify and quantify the presence of 

MSX within these populations provided evidence that there may be factors contributing 

to the lack of disease establishment within this population despite infection.  These 

factors may lie within the host population at this location or within the environment in 

which they live or some combination of both.  Further study of this and nearby 

populations in particular would be of great value in the investigation of H. nelsoni within 

the Bras dÕOr Lakes, along with the study of physical environmental parameters at 

various locations in the Lakes and may help determine a correlation between 

environmental factors and the likelihood that an infection will progress to a disease state.   
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Comparison of digestive gland, gill and mantle tissues from infected and uninfected  

oyster using protein electrophoresis proved too variable for use in identification of 

protein expression differences associated with disease.  However, the methodologies 

employed in this attempted study provide an excellent set of tools to pursue a specific 

protein target within these tissues.  Separation utilizing two-dimensional electrophoresis 

was greatly improved through initial dialysis of samples.  A pre-fractionation method 

developed for use in cultured cells to identify proteins located in cytosolic, membrane 

and nuclear components was employed and allowed for the elucidation of numerous high 

molecular weight proteins that were otherwise missed through use of traditional one 

dimensional SDS-PAGE and two-dimensional gel electrophoresis methods.  An increase 

in sample size through initial screening using SDS-PAGE may help in controlling for the 

variability seen among individual oysters. Targeting a single tissue may also further 

reduce variability, rather than using a cross section of the three tissues used for MSX 

disease diagnosis, using the new methods with which to study the tissue proteins of 

oyster hosts presented in this work. 

The high degree of variability encountered through the targeting of host tissues from 

different individuals based on disease state identified the need to reduce variability. One 

means to do this is to compare tissues from the same individual over the course of 

infection.  Within the Chesapeake Bay, populations of infected oysters are closely 

monitored and the infection pressure is tracked allowing for an accurate estimation of the 

seasonality of infection and disease development in this system.  A collection of na•ve 

oysters was achieved due to the existence of environmental constraints of certain 

populations that are free from infection with MSX.  Haemolymph as a target tissue for 



 158 

protein analysis allowed na•ve individual oysters to be bled repeatedly with an initial 

collection prior to infection being compared to subsequent haemolymph samples from the 

same individual after their deployment in the MSX pressured environment.  Histology 

with PCR then allowed for determination of both infected and uninfected individuals as 

well as a snapshot of disease intensity at the final sample point This allowed for 

groupings of individual oysters at all sample times based on the final disease intensity 

level.  Overall variability was reduced in the comparison of single individuals over three 

representative time points.  The use of haemolymph as the target tissue also yielded a 

lower overall abundance of protein in each sample, restricting the 2-DGE analysis and 

therefore the use of one dimensional SDS-PAGE for protein comparison was used 

resulting in a highly effective approach to the study of MSX targeting host haemolymph 

proteins. 

 

Using the above approach, several specific protein correlations were observed within this 

host parasite system.  The first was overall protein concentration found within individual 

haemolymph samples collected over the course of the field investigation.  Overall protein 

concentration decreased significantly within the group with no evidence of infection 

through histology but positive by PCR analysis at the time of the final sample.  The 

reduction in overall protein concentration was specific to this group and was also not 

found to differ significantly across intensity groupings.  This may suggest a draw on 

defensive proteins needed to ward off potential infections resulting in a successful 

immune response or a healthy oyster in which proteins are diverted to gonad 

development. Significant changes in overall protein concentration of challenged oysters 
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that mitigate MSX infection and disease could be pursued through targeted study of these 

individuals at the end of the field infection cycle. 

The only consistent change in protein bands identified by SDS-PAGE which correlated to 

exposure to an MSX positive environment was present in nearly all individuals regardless 

of intensity at the final sample time. This protein band was absent initially in na•ve 

oysters but present in both the two-week post-deployment and two-months post 

deployment haemolymph collections.  Identification through MS analysis yielded actin as 

the most likely protein identity for this band. The increase in actin within the cell free 

lysates of the haemolymph collections made post-deployment could be a result of a 

degradation of tissues involved in disease or a directed release of actin on its own or 

along with other cytoplasmic proteins as a targeted defensive strategy. As such this 

finding may indicate the identification of a role for actin in the disease manifestation of 

MSX in the eastern oyster.  There may also exist a purely environmental influence 

resulting in the increase of actin, unrelated to MSX specifically, and perhaps involved in 

environmental changes encountered after deployment in this new location such as change 

in salinity.   

In assessing the proteolytic activity within the haemolymph from different infection 

intensity class groups, a series of high molecular weight proteolytic bands were identified 

in the na•ve oyster initial collection prior to exposure to MSX.  This band correlated 

significantly with the development of high intensity infections.  It is the first evidence of 

a marker indicating susceptibility of C. virginica to the development of high intensity 

disease with the MSX parasite.  It is unknown if this factor is an indicator of genetic 

susceptibility, environmental susceptibility, or that this group of oysters had a specific 
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pre-existing condition weakening their defenses against any immune threat. However, 

further study is warranted to establish the action of this protease as well as its role in this 

disease system.  Insights into the role of this proteolytic activity linking certain 

susceptible oysters at risk of developing high intensity infections could lead to important 

information regarding the disease process and cycling of this parasite.  

Through investigation of certain enzymatic activities, alkaline phosphatase was identified 

as significantly more active over time within intensity class groupings, as well as 

displaying significantly higher activity among medium and heavy intensities. The 

particular role for this enzyme is not known but provides an interesting study target, as 

well as an excellent candidate for stress screening in oyster stocks using haemolymph as 

a non-lethal target tissue. Evidence of increased alkaline phosphatase activity correlated 

to infection intensity and disease progression over time is novel in the study of this host 

parasite system. 

The multi-faceted approach to understanding the proteins involved in the MSX disease 

interaction within the eastern oyster led to the development of a method with which to 

study the parasite within the field, which minimizes individual variability and allows for 

comparison across intensities found within an infected population.  The specific protein 

changes and findings can be used as a starting point toward further characterization of 

these changes and their relationship to the specific actions of disease and/or defense 

within this host parasite system. 

Research futures based on present findings 

Assessing an individual over time greatly increased the ability to identify protein 

differences in this system.  If SDS-PAGE or 2-DGE were to be tested in the future, 
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targeted isolation and screening of specific samples should involve separation of 

individual tissues.  Using the approach of na•ve individuals deployed in environments of 

disease pressure and assessing haemolymph over time within the Bras dÕOr Lakes would 

allow for more information about what is impacting the development of disease in 

Lynches River.  For example individuals from Lynches River could be deployed in 

Nyanza Bay at specific times of the year.   There should also be an assessment of those 

oyster populations who have dealt with disease pressure for many years (individuals from 

Nyanza) over time in order to look for changes to identify immune molecules that could 

be involved in successful mitigation of disease.   The specific targets identified provide 

many avenues for continued investigations in the Virginian and the Bras dÕOr Lakes 

environments and valuable comparison of differences between these two areas with one 

being well established in dealing with this parasite for over 50 years and the other having 

new pressures and continued spread. Taking some of the information established by the 

current work and incorporating a genetic approach to investigate expression of specific 

genes would further describe the biochemical interactions of this host parasite system.    

Haplosporidium nelsoni presents many challenges in the study of its success within 

certain environments, key changes in the proteome of host haemolymph provide some 

direction in continuing to discover the elements involved in infection and disease in this 

relationship.  

 


	1
	2
	3
	4
	5
	6
	FILE5_Chapter2_FINAL_REVISED_March2013 17
	FILE5_Chapter2_FINAL_REVISED_March2013 18
	FILE5_Chapter2_FINAL_REVISED_March2013 19
	FILE5_Chapter2_FINAL_REVISED_March2013 20
	FILE5_Chapter2_FINAL_REVISED_March2013 21
	FILE5_Chapter2_FINAL_REVISED_March2013 22
	FILE5_Chapter2_FINAL_REVISED_March2013 23

	7
	8
	9
	10

