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A density-functional theory of the isotropic–nematic phase transition in both rigid and semiflexible

hard-sphere chain fluids is described. The theory is based on an exact analytical evaluation of the

excluded volume and second virial coefficient B2 for rigid chain molecules, which demonstrates that

B2 in these cases is equivalent to that of a binary mixture of hard spheres and hard diatomic

molecules. It is assumed that the same binary-mixture representation applies to semiflexible chains,

while scaled particle theory is used to obtain the properties of the fluid at arbitrary densities. The

results of the theory are in very good agreement with Monte Carlo !MC" simulation data for rigid
tangent hard-sphere chains, but in lesser agreement with available MC studies of rigid fused

hard-sphere chains. We find that there is reasonable agreement between the theory and MC data for

semiflexible tangent chains, which improves with increasing chain length. The behavior predicted

by the theory for semiflexible chains is contrasted with that given by the Khokhlov and Semenov

theory of nematic ordering of wormlike polymer chains. © 2001 American Institute of Physics.
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I. INTRODUCTION

Several theories have been developed which accurately

predict the thermodynamic properties of hard-sphere chain

fluids, such as thermodynamic perturbation theory !TPT",1,2

generalized Flory dimer theory !GFD",3–5 scaled particle

theory !SPT",6,7 as well as various methods combining these

approaches.8–11 In their original forms, these theories are

limited to describing only the behavior of uniform isotropic

fluid phases. Recently, density-functional methods have been

used to extend these theories to nonuniform12–14 and liquid–

crystalline fluids.15–18 Generally, the results of the latter

studies have been less accurate !in comparison with com-

puter simulation data" than the theories of uniform isotropic

fluids, indicating that our fundamental understanding of the

statistical behavior of such systems is still incomplete and,

therefore, that further study is warranted.

In a recent article, Jaffer, Opps, and Sullivan !JOS"19

used a density-functional approach to investigate the

nematic!N"–isotropic!I" phase transition in a fluid of rigid

linear fused hard-sphere !LFHS" chain molecules. The JOS

theory utilized a concept similar to that of TPT and GFD

theories, namely representing the chain fluid by a suitable

combination of reference fluids composed of hard spheres

and hard diatomic molecules. A method related to the ‘‘de-

coupling approximation,’’ originally introduced by Parsons20

and Lee21 for a hard-spherocylinder fluid, was used to apply

the theory to nematic orientationally ordered phases. The

theory yielded excellent agreement for the coexisting densi-

ties of both the I and N phases and for the nematic orienta-

tional order parameter at the transition, in comparison with

Monte Carlo !MC" data, but predicted pressures substantially

greater than those shown by the simulations. In this article

we describe a revised approach for rigid chains which sig-

nificantly improves the predictions for the variation of pres-

sure with density while maintaining excellent agreement for

the transition values of the densities and order parameter. In

addition, we extend the theory to semiflexible hard-sphere

chain fluids, comparing results for the I–N transition in these

fluids with those of recent MC simulations.22,23

The theory described in this work is based on a number

of different elements. We first show that the pair excluded

volume and second virial coefficient B2 for rigid LFHS

chains can be represented exactly by that for an appropriate

binary mixture of hard spheres and hard diatomic molecules.

The assumption that the same binary-mixture representation

of B2 also applies to semiflexible hard-sphere chains, while

not exact, underlies the extension of our theory to the latter

case. It is also assumed that the thermodynamic behavior of

the fluid at arbitrary density and degree of orientational order

can be approximated by that of the same hard-sphere/hard-

diatomic mixture generated at the second virial level. This

description contrasts with that of the GFD and TPT

theories1–5 and used by JOS,19 which is based on a superpo-

sition of the behavior of pure hard-sphere and hard-diatomic

fluids. In this work, instead of the decoupling-approximation

approach,19 SPT is used to obtain the properties of the fluid
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at arbitrary densities. Our form of SPT combines aspects of

this theory developed both by Boublik and co-workers6,7 and

by Cotter and co-workers.24,25 One important difference be-

tween these alternative versions of SPT, as originally formu-

lated, is that only Cotter’s is applicable to both nematic and

isotropic phases. The relations between our approach and

other recent density-functional theories of nematic ordering

in hard-sphere chain fluids17 as well as the Khokhlov–

Semenov theory of nematic ordering in polymer chains26 will

be discussed.

The rest of the article is organized as follows. The theory

is described in Sec. II, along with the numerical methods

used in solving the theory. The results of our calculations

and comparisons with other theories and with computer

simulation data is described in Sec. III. In Sec. IV we present

a summary and some conclusions.

II. THEORY

A. General

In this study we consider a fluid of semiflexible chain

molecules !or n-mers" consisting of n overlapping hard

spheres of diameter d separated by a fixed bondlength l%d ,

which may exhibit bond-bending and torsional degrees of

freedom. The internal conformation of a molecule is charac-

terized by the set of Euler angles &1 , &2 , . . . &n!1'(&)
corresponding to the n!1 successive bonds in the chain,

where & i stands for the polar and azimuthal angles (* i ,+ i)

specifying the orientation of the ith bond in an arbitrary

space-fixed frame. The one-molecule potential energy de-

pending on these angles is denoted U((&)), which may in-
clude bond-bending and torsional potentials as well as in-

tramolecular hard-sphere interactions.

Considering only uniform phases of number density , ,
the variational Helmholtz free energy functional F of the

fluid is

-F

N
"ln!., "!1#! d(&) f !(&)"# ln f !(&)"

#-U!(&)"$#

-/F

N
, !1"

where f ((&)) is the normalized conformation probability
distribution function of a single chain, N is the number of

molecules, -"1/(kT), and . is a thermal de Broglie vol-

ume. The functional /F accounts for nonideal contributions
to F due to intermolecular hard-core interactions. In this ar-

ticle we consider an approximation for /F analogous to

those used in several recent density-functional theories of

nematic ordering in rigid and semiflexible n-mers,15–18 based

on the decoupling approximation, which is of the generic

form

/F"/F!B2* ,0 " , !2"

where 0",v is the volume fraction, v is the molecular vol-

ume, and B2*'B2 /v is the reduced second virial coefficient

of the system. The free energy according to the SPT of

Cotter24 also has this form. All of the above-mentioned

theories15–18,24 can be considered as extrapolations of the ex-

act low-density !Onsager,27 0→0) limit,

-/F/N → B2*0 , !3"

which retain the feature that /F is a linear function of B2* at
arbitrary density, but with a nonlinear dependence on 0 that

approximately accounts for higher-order virial effects. In the

original Parsons–Lee decoupling theory,20,21 /F is propor-

tional to the excess free energy of hard spheres at volume

fraction 0 .
The second virial coefficient B2 for semiflexible hard-

sphere n-mers is given by

B2"
1

2
! d(&)1d(&)2 f !(&)1"

$ f !(&)2" ve
(n)!(&)1 ,(&)2" , !4"

where ve
(n)((&)1 ,(&)2) is the mutual excluded volume of

two chains labeled 1 and 2 with conformations (&)1 and
(&)2, respectively. Note that B2 is a functional of the chain
probability distribution function f ((&)). The equilibrium
form of the latter is that which functionally minimizes F.

Using Eqs. !1", !2", and !4", the resulting self-consistent
equation for f ((&)) in the case of semiflexible chains is
quite complicated numerically and in fact has not been stud-

ied !to our knowledge". Further progress has been achieved
by making additional approximations. The theory of Fynew-

ever and Yethiraj17 approximates Eq. !4" by replacing the
full conformation probability f ((&)) by a ‘‘coarse-grained’’
probability depending only on the orientation of an overall

molecular axis. In Sec. II B, we will describe an alternative

approximation for B2 in the case of semiflexible molecules,

suggested by its form for rigid molecules, which is closely

analogous to that used in the theory of Khokhlov and

Semenov26 for wormlike polymer chains.

B. Second virial coefficient for n-mers

In the case of perfectly rigid linear n-mers, the internal

conformation of a molecule is specified by only a single

Euler angle pair &"(* ,+) characterizing the orientation of
the molecular axis. The conformation probability f ((&)) re-
duces to the distribution function of molecular axis orienta-

tions, f (&), and the expression for the second virial coeffi-
cient in Eq. !4" becomes

B2"
1

2
! d&1 d&2 f !&1" f !&2"ve

(n)!*12" , !5"

where the excluded volume ve
(n)(*12) now depends only on

the relative angle *12 between the two molecular axes. In an
isotropic phase f (&)"1/(41) while in a nematic phase,
f (&) is peaked around orientations corresponding to the di-
rection of nematic alignment. In Ref. 19, generalizing an

earlier analysis by Williamson and Jackson28 which was re-

stricted to linear tangent hard-sphere n-mers, it was shown

that ve
(n)(*12) can be expressed exactly as

ve
(n)!*12""ve

(n)!0 "#!n!1 "2vc
(2)!*12" , !6"
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where ve
(n)(0) is the excluded volume for two parallel

n-mers and vc
(2)(*12) is the contribution from the so-called

‘‘central region’’ of the excluded volume for two hard di-

atomic molecules. An analytic but somewhat lengthy expres-

sion for vc
(2)(*12) is given in the appendix of Ref. 19, while

ve
(n)!0 ""

41d3

3
"1#!n!1 "# 3l*

2
!

! l*"3

8
$ % , !7"

where l*"l/d is the reduced bondlength.

We now verify that ve
(n)(*12) as given by the last two

equations can be expressed equivalently as the mean ex-

cluded volume of a ‘‘binary mixture’’ of hard spheres

!monomers" and hard diatomic molecules !dimers". That is,

ve
(n)!*12""x1

2
ve
(1)

#2x1x2ve
(1,2)

#x2
2
ve
(2)!*12" , !8"

where x1 and x2"1!x1 are the ‘‘mole fractions’’ of the

monomers and dimers, respectively, while ve
(1)

"41d3/3 is
the excluded volume for a pair of monomers and ve

(1,2) is the

excluded volume between a monomer and a dimer, given by

ve
(1,2)

"

41d3

3
"1#

3l*

4
!

! l*"3

16
% . !9"

Note that both ve
(1) and ve

(1,2) are independent of molecular

orientations. Comparing Eqs. !6" and !8", with ve
(2)(*12) in

the latter given by Eq. !6" for n"2, one finds

x2"n!1, x1"1!x2"2!n . !10"

The literal interpretation of x1and x2 as ‘‘mole fractions’’ is,

of course, unphysical !i.e., x2%1 and x1&0) when n%2.

However, we can give an alternative geometric interpretation

of these relations. Note that x2'(n!1) is the number of

atom–atom bonds in a chain of n atomic sites. Consider

overlapping two rigid n-mers having an arbitrary relative ori-

entation *12 , to sweep out the volume excluded by one mol-
ecule to the other. One can envision carrying out this process

by successively overlapping each dimer segment of one

n-mer with all dimer segments on the other n-mer. Since

each chain molecule contains x2 such segments, this process

immediately generates the contribution x2
2
ve
(2)(*12) in Eq. !8"

to the total excluded volume. The latter term overcounts the

excluded volume, but that overcounting is compensated by

the monomer–monomer and monomer–dimer overlap terms

in Eq. !8". It can also be shown that this argument holds at
the level of the position-dependent Mayer-function represen-

tation of B2 and not only at the level of the excluded volume

!which involves spatial integration of the Mayer function".
The latter fact may be relevant to considering extensions of

the theory to nonuniform systems.

The decomposition of ve
(n) and hence of B2 into mono-

mer and dimer contributions is reminiscent of the ideas of

the TPT and GFD theories,1–5,19 although the latter theories

utilize a superposition of the properties of pure monomer and

dimer fluids rather than a ‘‘binary mixture’’ representation.

In the present case, it is also to be noted that the diameter d

and bondlength l of the monomer and dimer subunits are

equal to those in the original n-mer, conditions which are

sometimes relaxed in GFD, TPT, and related theories4,11 for

fused-sphere models.

The key assumption we will make in generalizing the

theory to semiflexible n-mers is that the excluded volume

ve
(n)((&)1 ,(&)2) #see Eq. !4"$ can be decomposed into

monomer and dimer contributions analogous to the rigid

n-mer relation Eq. !8". In this case, the contribution

x2
2
ve
(2)(* i j) in Eq. !8" has to be replaced by summation over

all dimer–dimer pairs on the two chain molecules, since the

relative angles * i j between different i , j pairs are not all iden-
tical. On evaluating Eq. !4", this yields the approximation

B2&
1

2
"x12 ve

(1)
#2x1x2 ve

(1,2)
#x2

2

$! d&1 d&2 f
(2)!&1" f

(2)!&2" ve
(2)!*12"% , !11"

where the quantities x1 ,x2 ,ve
(1) ,ve

(1,2) , and ve
(2)(*) are the

same as earlier, while f (2)(&) is the normalized distribution
function of dimer orientations. This is related to the full

n-mer conformation distribution function by

f (2)!& ""

1

!n!1 "
! d(&) f !(&)" 2

i"1

n!1

3!&!& i" . !12"

Note that f (2)(&) averages over all dimers in the chain. The
approximation, Eq. !11", for B2 is similar to that used in the
theory of Khokhlov and Semenov26 for very long semiflex-

ible polymer chains, where the dimer subunits of the present

theory are replaced by rigid spherocylinders of length equal

to the ‘‘persistence length’’ of the chain. In an isotropic

phase, f (2)(&) equals 1/(41) and then Eq. !11" yields the
same value of B2 as in the isotropic phase of a rigid n-mer

fluid. Hence the present theory will generate identical ther-

modynamics for isotropic phases of rigid and semiflexible

n-mers, in good agreement with computer simulation

results.10,11,16

C. Scaled particle theory

Now we will discuss the form of the excess free energy

/F #see Eq. !1"$ which arises in SPT.6–8,10,24,25 Although
originally derived for rigid convex hard-core molecules, it

has been argued that the theory should also be applicable to

nonconvex n-mers, both rigid6–8 and semiflexible.10 In view

of the results derived in the previous subsection, we could

consider two alternative formulations of the theory, applied

either to the original pure n-mer fluid or to a binary mixture

of hard monomers and hard dimers with mole fractions given

by Eq. !10". It is convenient to first consider the pure n-mer
representation. We will actually begin with the equation of

state for the pressure P. According to the SPT of both Bou-

blik et al.6–8,10 and Cotter et al.,24,25 P is given by

-P"," 1

1!0
#

340

!1!0 "2
#

3502

!1!0 "3
!

503

!1!0 "3
% , !13"

where the parameters 4 and 5 are discussed below. Follow-

ing Boublik et al., the last term on the right-hand side of Eq.

!13" is a ‘‘Carnahan-Starling’’29 correction which is not in-
cluded in Cotter’s work. The so-called nonsphericity param-

eter 4 is related to the reduced second virial coefficient B2*

by
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B2*"1#34 , !14"

which can be verified by expanding Eq. !13" to quadratic
order in , . For isotropic fluid phases of hard convex mol-
ecules, the relation, Eq. !14", for 4 in terms of B2 agrees

with that given by SPT6–8,10 in terms of the geometric quan-

tities v ,s , and r, where s and r are the molecular surface area

and mean radius of curvature, respectively:

4"

rs

3v

. !15"

To apply Eq. !15" to nonconvex n-mers, for which r is ill-
defined, Boublik and Nezbeda6 proposed approximating r by

that of the corresponding spherocylindrical convex envelope.

In this case, v , s, and r are given by30

v"vn'
1d3

6
"1#

1

2
!n!1 "!3l*!! l*"3"% ,

s"sn'1d2#1#!n!1 "l*$ , !16"

r"rn'
d

2
"1#!n!1 "

l*

2
% .

For an isotropic single-component fluid, according to the

SPT of Boublik et al.,6–8,10 the parameter 5 in Eq. !13" is
given by

5"42 . !17"

With this form of 5 , the equation of state, Eq. !13", is called
‘‘improved scaled particle theory’’ !ISPT". In the case of
hard diatomics (n"2" this yields very accurate results for P
in comparison with computer simulations, but otherwise the

ISPT increasingly overestimates the pressure with increasing

n .9–11 The alternative version of SPT described by Cotter24,25

produces a different result for 5 . Strictly developed for hard
spherocylinders, one can show that Cotter’s expression for 5
is

5"

ds

9v
"34!# ds

4v
$ % . !18"

Cotter’s work also allows for nematic ordering, on relating 4
to the nematic-phase B2 via Eq. !14". The main source of the
difference between the two forms of SPT appears to be the

fact that Cotter’s version is based on ‘‘two-variable’’

scaling,24,25 whereby the molecular diameter and length are

scaled independently, whereas Boublik7 employs a single

scaling parameter for all molecular dimensions. We have

found, however, that an expression for 5 similar to that in

Eq. !18" follows from the mixture version of Boublik’s

SPT31 when the latter is applied to the binary-mixture repre-

sentation of an n-mer fluid discussed in the previous subsec-

tion, rather than to the original single-component representa-

tion. In this case, one obtains the same expression for

pressure as in Eq. !13", with 5 given by32

5"

ds

9v
"34!# ds

4v
$ # 1!!n!1 "# l*

2
$
2

$ % . !19"

!The mixture form of SPT due to Cotter and Wacker25 pro-

duces the same result as Eq. !18" for 5 using both the single-

component and binary-mixture representations." One sees
that Eq. !19" agrees with Eq. !18" in the ‘‘spherocylinder
limit’’19 of an n-mer fluid #n→6 ,l→0,(n!1)l'L→ fi-

nite$. It can also be shown that Eq. !19" is equivalent to Eq.
!17" in the case of an isotropic diatomic fluid, when Eqs. !15"
and !16" are employed. However, for n%2 and any value of

l*%0, one finds that 5 according to Eq. !19" is smaller than
the ISPT expression, Eq. !17", and increasingly deviates
from the latter as n increases.

In this work, we will evaluate 5 from Eq. !19", with s
and v given by the expressions in Eq. !16". Following Cot-
ter’s SPT, the nonsphericity parameter 4 in Eqs. !13" and
!19" will be obtained for both isotropic and nematic phases
from Eq. !14" in terms of B2, where the latter in turn is
calculated from Eq. !11". Although not demonstrated here
for lack of space, we have found that the isotropic pressures

calculated from this approach are in excellent agreement

with computer simulation results3,33 for fully flexible tangent

n-mers with n as large as 201, having an accuracy compa-

rable to that of GFD theory.

Using the thermodynamic relation PN",2(7F/7,)N ,T ,
where any dependence of f ((&)) !and hence of the param-
eters 4 and 5) on density , is ignored while taking the

,-derivative, since f ((&)) minimizes F, one can verify that
the excess free energy consistent with the equation of state,

Eq. !13", is

-/F

N
"!5!1 "ln!1!0 "#

340

!1!0 "
#

50

!1!0 "2
. !20"

D. Self-consistency equations

Using the approximation, Eq. !11", for B2, functional
minimization of Eq. !1" subject to the normalization condi-
tion 8d(&) f ((&))"1 leads to the self-consistency equation

f !(&)""

1

Z
exp"!-U!(&)"!

a!0 "

!n!1 " 2
i"1

n!1

9!& i"% ,
!21"

where Z is the appropriate normalization factor,

Z"! d(&) exp"!-U!(&)"!

a!0 "

!n!1 " 2
i"1

n!1

9!& i"% ,
!22"

the function 9(&) is given by

9!& ""

!n!1 "2

v
! d&! f (2)!&!" ve

(2)!*&&!
" , !23"

and a(0)"(-/N)(7/F/7B2*)0 . Using Eqs. !14", !19", and
!20", we have

a!0 ""

d s

9v
" ln!1!0 "#

0

!1!0 "2
%#

0

!1!0 "
. !24"

Note that the full self-consistency is achieved by combining

Eq. !21" to Eq. !23" with Eq. !12". Note also that only a
single type of ‘‘effective potential’’ 9(&) occurs, but in Eq.
!21" this is summed over all bonds of the chain molecule.
Due to the combined self-consistency conditions and the in-
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tramolecular bonding constraints imposed by U((&)), the
approximations embodied in Eqs. !12" and !21" to Eq. !23"
include partial correlations between different bonds of the

chain in a nematic phase.

In the rigid-molecule limit, all dimer segments must lock

into the same orientation, and hence the intramolecular po-

tential U((&)) should approach the form

e!-U((&)): ;
i"1

n!2

3!& i#1!& i" . !25"

Removing this delta-function factor from Eq. !21", the re-
sidual angular probability f (&) satisfies

f !& ""

1

Z
exp#!a!0 " 9!& "$ , !26"

where 9(&) is given by Eq. !23" with the identification
f (2)(&)' f (&) in this limit. In the nematic director axis
frame, the functions f (&)" f (*) and 9(&)"9(*) depend
only on the polar angle * with respect to the nematic direc-
tor. In the case of rigid n-mers, the self-consistency Eq. !26"
for a nematic phase was solved by iteration using the same

numerical methods described in Sec. II C of Ref. 19 !see also
below". All angular integrations such as in Eq. !23" were
performed by the trapezoid rule using fine grids for the an-

gular variables * and + . The function ve
(2)(*12) is given by

Eqs. !6" and !7" for n"2, with vc
(2)(*12) obtained from the

appendix of Ref. 19.

In the case of semiflexible n-mers, we have used an in-

tramolecular bond-bending potential17,22,23

-UB!(&)""!< 2
i"1

n!2

cos * i ,i#1 , !27"

where * i ,i#1 is the angle between bonds i and i#1. In prin-
ciple, the total intramolecular potential U((&)) consists of
UB plus hard-sphere interactions between nonadjacent

monomers on a chain. In this case, we solve the self-

consistency Eqs. !12" and !21"–!23" by an iteration method
analogous to that used for rigid n-mers. That is, starting with

a trial guess for the dimer probability f (2)(*), the effective
potential 9(*) is evaluated from Eq. !23" on a fine grid of *
values, which is used in Eqs. !21" and !22" to calculate
f ((&)) for arbitrary n-mer conformations, and a new esti-

mate of f (2)(*) is then determined from Eq. !12". Of course,
the last step involves integration over all possible chain con-

formations. Similar to other work,34 we have carried this out

using Monte Carlo methods to generate =106 self-avoiding
chain conformations distributed according to the Boltzmann

weight exp#!-UB((&)$. These conformations are generated
once and stored for repeated evaluation of f (2)(*) from Eq.

!12" at successive iterations. !In practice, for the values of <
considered in this work, explicit checks for chain self-

avoidance due to hard-sphere interactions between nonadja-

cent monomers were unnecessary, since conformations with

sufficient back-folding of a chain to produce such interac-

tions had negligible probability."
Finally, we recall that the pressure of the fluid is given

by Eq. !13" with 4 and 5 determined from B2 using Eqs.

!14" and !19". The equilibrium value of the free energy F is

obtained from Eqs. !1" and !20" with f ((&)) given by Eq.
!21". The corresponding chemical potential > , which along
with P is needed in determining the N–I phase coexistence

boundaries, can be obtained from the thermodynamic rela-

tion >"F/N#P/, . This gives

->"ln# .,

Z
$!1!a!0 " ! d& 9!& " f (2)!& "

#

-P

,
#

-/F

N
. !28"

The N–I coexistence conditions are obtained by equating P

and > for the two phases.

III. RESULTS

A. Rigid n-mers

We first examine the predictions of the present theory

for rigid linear molecules, containing either tangent (l*

"1) or fused (l*&1) hard spheres. Figures 1!a" and 1!b"
show the reduced pressure P*'Pvn /kT vs. volume fraction

0 for tangent 8-mers and 20-mers, respectively, comparing

the present theory with Monte Carlo simulation data of

Yethiraj and Fynewever22 and with results obtained by these

authors in Ref. 17 using the Parsons–Lee decoupling ap-

proximation. For both theories, the location of the first-order

I–N transition with its accompanying discontinuity in density

is indicated by a horizontal line. In comparison with our

earlier theory,19 it is found that the current theory yields a

significantly more accurate variation of pressure with den-

sity. The present theory also agrees better with the simula-

tion results than the Parsons-Lee theory !especially in the
case n"8), the latter tending to underestimate the values of

P* for given 0 .
Figures 2!a" and 2!b" depict the orientational order pa-

rameter S2 vs. 0 for linear tangent 8-mers and 20-mers, re-

spectively, where S2 is defined as

S2"! d& f !& " P2!cos * " , !29"

P2 being the second Legendre polynomial. At equilibrium,

S2"0 in an isotropic phase while it jumps to a positive value

in the nematic phase. For the 8-mer case, the present theory

slightly overestimates and the Parsons–Lee theory underes-

timates S2 in comparison with the MC data22 #which are
obtained from both the canonical (NVT) and isobaric-

isothermal (NPT) ensembles$, while our earlier theory19

gives almost exact agreement. For 20-mers, in contrast, the

present theory is seen to yield nearly exact agreement with

the MC results.

The values of the coexisting volume fractions, pressure,

and order parameter S2 in the nematic phase at the I–N tran-

sition are listed in Table I. For 8-mers, the present theory

underestimates the values of the pressure and densities in

both phases while overestimating the magnitude of the den-

sity gap, in comparison with MC. These trends change to a

slight overestimate of the pressure and density values while

giving close agreement for the density gap in the case of

20-mers. For both n-mer cases, the Parsons–Lee theory over-

3318 J. Chem. Phys., Vol. 114, No. 7, 15 February 2001 Jaffer et al.



estimates both the value of the densities and the density gap.

Table I also includes our results for tangent 7-mers in com-

parison with MC simulation data and theoretical calculations

by Williamson and Jackson16 using both the Parsons–Lee

decoupling approach and a variant of this approach proposed

by Vega and Lago.15 Similar trends to those obtained for

8-mers are seen. At all volume fractions 0 , the pressures
predicted by the present theory and the Vega–Lago theory as

implemented in Ref. 16 are in close agreement, but the latter

yields a greater underestimate of the transition densities. Fi-

nally, Table I includes coexistence results obtained from a

recently proposed ‘‘modified Parsons–Lee’’ theory,18 which

replaces the n-mer molecular volume v in the original

Parsons–Lee theory by a slightly larger effective volume.

The results of this theory improve on those of the Parsons–

Lee theory and are comparable to the present theory for

smaller elongations, but more strongly overestimate the nem-

atic pressure as a function of 0 in the case of 20-mers.

The only simulation data for the I–N transition in fused

hard-sphere n-mers of which we are aware is that due to

Whittle and Masters.35 Figures 3!a" and 3!b" compare our
present results for P* vs. 0 with the simulation data in the

case of linear fused 8-mers with reduced bondlength l*

"0.5 and 0.6, respectively. As in Ref. 19, we also compare

with theoretical predictions obtained in Ref. 5 based on GFD

theory, which is limited to describing isotropic phases. For

the smaller elongation l*"0.5, both the present theory and

our previous one19 predict the occurrence of an I–N transi-

tion at volume fractions between 0.4 and 0.5 !see also Table
I", in apparent disagreement with the simulations, which
found no unambiguous evidence for such a transition. Oth-

FIG. 1. Variation of the reduced pressure with volume fraction 0 , compar-
ing the present theory with the Parsons–Lee theory and Monte Carlo data

!Ref. 17, 22", for linear tangent 8-mer chains !a" and 20-mer chains !b".

FIG. 2. Variation of the order parameter S2 with volume fraction 0 for the

same cases as in Fig. 1!a" and 1!b". Also shown are results !denoted JOS"
from Ref. 19.
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erwise, the simulated pressures at large 0 lie between the

isotropic and nematic branches of the current theory. For the

larger elongation l*"0.6, the simulations35 did show evi-

dence of a transition, indicated by the two distinct branches

of P* vs. 0 #Fig. 3!b"$. However, since both branches occur
over a significant range of pressures, the precise location of

the equilibrium transition in the simulation data is uncertain.

It is apparent from Fig. 3!b" that the current theory still sig-
nificantly overestimates the pressure in the nematic region

compared with the MC data. Nonetheless, in view of equili-

bration problems and uncertainties due to finite-size effects,

as discussed in Ref. 35, further simulation studies of this

fused-chain model would be useful.

B. Semiflexible n-mers

In this subsection, we compare our theory with MC data

obtained by Yethiraj and Fynewever22 as well as with calcu-

lations done by the latter authors17 using the Khokhlov–

Semenov !KS" theory26 and a theory based on the Parsons–
Lee decoupling approximation with B2 treated as described

at the end of Sec. II A !which will be denoted FY in the

following". To indicate the degree of orientational order, we
define the order parameter S2 in the case of semiflexible

n-mers by analogy to Eq. !29",

S2"! d(&) f !(&)" P2#cos *!(&)"$ , !30"

where *((&)) is now the angle between the nematic director
and the end-to-end vector of a chain molecule in conforma-

tion (&). This definition of S2 is comparable to but simpler
to evaluate than that used by FY, which relates the ‘‘molecu-

lar axis’’ to the eigenvector corresponding to the smallest

eigenvalue of the molecular moment of inertia tensor.

Figures 4!a" and 4!b" show the reduced pressure vs. 0
for semiflexible tangent 8-mers and 20-mers, respectively,

for a value of the reduced chain bending energy <"50. Also

shown are MC data and the predictions of the FY and KS

theories. It is clear for both n-mers that the present theory

improves on both the FY and KS theories, and yields par-

ticularly good agreement with MC data for both the isotropic

and nematic branches in the case of 20-mers. For 8-mers,

however, the pressure of the nematic branch remains signifi-

cantly underestimated by the present theory, as are the values

of the coexisting densities at the I–N transition. Related

trends are observed in the behavior of S2 vs. 0 for these

cases, as shown in Figs. 5!a" and 5!b". For 8-mers, the

present theory is seen to overestimate S2 at any value of 0 in
the nematic phase as well as predict ordering to occur at too

low values of 0 , in comparison with the MC results, while
the FY and KS theories produce the opposite behavior. For

20-mers, on the other hand, the present theory yields excel-

lent agreement with the MC data for S2. The precise transi-

tion values of various quantities are listed in Table II.

The dependence of the order parameter on chain stiff-

ness < in the case of 8-mers at fixed volume fractions 0
"0.30 and 0.35 is shown in Figs. 6!a" and 6!b", respectively.

The results are compared with simulation data,22 KS theory

!which does not predict nematic ordering at the lower density

0"0.30), and FY theory.17 An analogous comparison for

20-mers at 0"0.20 is shown in Fig. 7. These graphs reveal

the obvious qualitative trends that nematic ordering is fa-

vored by increasing the stiffness parameter < and that the
‘‘critical’’ value of < for the onset of ordering is reduced on
increasing 0 at fixed n. In the case of 8-mers, the present

theory clearly overestimates S2 as a function of < and under-
estimates the critical value of < , effects which are more pro-

TABLE I. Nematic–isotropic coexistence results for rigid n-mers.

n-mer chain Source 0!I" 0!N" S2!N" P*

7-mer, l*"1.0 Present theory 0.268 0.286 0.72 2.98

JOS theorya 0.290 0.299 0.649 4.94

MC-NPT datab 0.285'0.018 0.299'0.014 0.64–0.70 3.47'0.32

Vega–Lago theoryb 0.255 0.273 =0.7 2.78

Parsons–Lee theoryb 0.303 0.319 =0.7 3.12

Modified Parsons–Leec 0.294 0.313 0.71 3.67

8-mer, l*"1.0 Present theory 0.240 0.259 0.73 2.41

JOS theorya 0.260 0.269 0.654 3.95

MC-NPT datad 0.257 0.271 =0.7 2.65

Parsons–Lee theorye 0.274 0.295 =0.7 2.61

Modified Parsons–Leec 0.263 0.283 0.72 2.91

20-mer, l*"1.0 Present theory 0.109 0.126 0.77 0.692

JOS theorya 0.116 0.124 0.695 0.97

MC-NPT datad 0.105 0.120 =0.7 0.62

Parsons–Lee theorye 0.117 0.137 =0.75 0.69

Modified Parsons–Leec 0.115 0.134 0.77 0.78

8-mer, l*"0.5 Present theory 0.423 0.440 0.68 7.13

JOS theorya 0.469 0.477 0.617 13.1

8-mer, l*"0.6 Present theory 0.378 0.396 0.69 5.42

JOS theorya 0.417 0.425 0.622 9.8

aReference 19.
bReference 16.
cReference 18.
dReference 22.
eReference 17.
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nounced at the lower density 0"0.30 #Fig. 6!a"$. The FY
theory errs in the opposite sense. At the higher density 0
"0.35, both the present and FY theory agree more closely

with the MC data #Fig. 6!b"$, the FY theory giving a better
fit. For 20-mers !Fig. 7", the present theory clearly gives the
best agreement with MC results for S2.

Some additional results indicating effects of chain length

and chain stiffness on transition properties are contained in

Table II, for 8-mers with <"10 and 16-mers with <
"10, 50, and 100. The latter cases include comparison with

MC results for the coexisting volume fractions obtained by

Escobedo and de Pablo.23 As noted in previous works,17,23 all

methods agree in predicting that the coexistence densities

increase while the density gap 0(N)!0(I) decreases with
decreasing chain stiffness < . Increasing the chain length from
n"8 to n"16 lowers the volume fractions while increasing

the density gap at any given < . Consistent with our other
findings, it is seen that the present theory underestimates the

coexisting densities in comparison with MC data, whereas

those densities are overestimated by both the FY and KS

theories.

IV. SUMMARY AND DISCUSSION

For rigid tangent n-mer chains, we have shown that the

present theory is in very good agreement with MC simula-

tion data for the density dependence of the pressure and ori-

entational order parameter S2 as well as for the values of the

FIG. 3. Variation of the reduced pressure with volume fraction 0 , compar-
ing the present theory with GFD theory !Ref. 5" and with Monte Carlo data

!Ref. 35", for linear fused 8-mers with reduced bondlength l*"0.5 !a" and

l*"0.6 !b".

FIG. 4. Reduced pressure vs. volume fraction for semiflexible tangent

8-mers !a" and 20-mers !b" with bending energy <"50, comparing the

present theory with KS theory and Monte Carlo data !Refs. 17, 22".
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coexisting densities at the I–N transition. The results in these

cases improve upon those of our earlier theory,19 especially

for the pressure as a function of density, as well as those of

the Parsons–Lee theory and several modified versions15,18 of

the latter theory. In the case of fused !nontangent" hard-
sphere rods, the present theory still shows significant differ-

ences from the limited available MC data, and further studies

of fused-chain models by both theory and simulation would

be worthwhile.

The results of the theory in comparison with MC data for

semiflexible tangent hard-sphere chains are mixed. For

8-mers with a fairly strong bending energy <"50, the

present theory underestimates the pressure in the nematic

phase as well as the values of the coexisting densities at the

I–N transition. These effects are related to the finding that

the theory overestimates the degree of orientational order S2
as a function of density in this case. In contrast, very good

agreement with simulation data is obtained for 20-mer

chains. These differences between the predictions of the

theory for 8-mers and 20-mers are similar to but much more

pronounced than found in the case of rigid n-mers. Similarly,

we find that the present theory overestimates the degree of

order as a function of the chain bending energy < at fixed
density and underestimates the bending energy required for

the onset of ordering in the case of 8-mers, but agrees very

well with simulation data for 20-mers.

The underestimation of the density and bending energy

required for nematic ordering, more pronounced for shorter

chains, are in contrast with trends exhibited by both the FY

!Ref. 17" and KS !Ref. 26" theories. The differences between
the present theory and that of FY for semiflexible chains

reside both in the treatment of the intermolecular excluded

volume and the evaluation of density-dependent factors in

the excess free energy. Note that for rigid chains, the FY

theory reduces to the Parsons–Lee theory, which we have

shown to be less accurate than the present theory. On the

other hand, the FY theory approximately takes account of

chain flexibility in evaluating the excluded volume !see Sec.
II A" and is expected to be more accurate in that regard. The
present treatment of the excluded volume of two chains is

more closely related to that of KS theory, although, as de-

scribed in Sec. II B, for the latter purpose KS theory repre-

sents segments of the chain molecule by spherocylinders

rather than by dimers, which is one factor contributing to the

quantitative differences between these theories. Another fac-

tor which is known36,37 to produce overestimates of the den-

sities required for nematic ordering by KS theory !as imple-
mented in Refs. 17 and 22" is its use of the Onsager27 trial
form for the orientational distribution function. The fact that

FIG. 5. Order parameter S2 vs. 0 for the same cases as in Fig. 4!a" and 4!b".

TABLE II. Nematic–isotropic coexistence results for semiflexible tangent

n-mers.

n-mer chain Source 0!I" 0!N" S2!N" P*

8-mer, <"50 Present theory 0.265 0.277 0.64 3.21

MC-NPT dataa 0.294 0.300 =0.6 4.2

FY theoryb 0.301 0.316 0.65 3.42

KS theoryb 0.313 0.334 0.67 3.38

20-mer, <"50 Present theory 0.149 0.157 0.62 1.43

MC-NPT dataa 0.153 0.166 0.72 1.57

FY theoryb 0.161 0.171 0.62 1.38

KS theoryb 0.174 0.190 0.62 1.49

8-mer, <"10 Present theory 0.344 0.352 0.61 7.57

FY theoryb 0.380 0.388 na na

KS theoryb 0.412 0.428 na na

16-mer, <"10 Present theory 0.284 0.292 0.64 7.36

FY theoryb 0.311 0.316 na na

KS theoryb 0.344 0.362 na na

16-mer, <"50 Present theory 0.169 0.179 0.63 1.65

MC datac 0.176 0.187 na na

FY theoryb 0.184 0.196 na na

KS theoryb 0.198 0.216 na na

16-mer, <"100 Present theory 0.152 0.164 0.66 1.26

MC datac 0.158 0.173 na na

FY theoryb 0.166 0.179 na na

KS theoryb 0.177 0.197 na na

aReference 22.
bReference 17.
cReference 23.
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the present theory overestimates the degree of orientational

ordering and hence underestimates the density or bond-

bending energy required for the onset of ordering is ex-

plained by its approximate treatment of the excluded volume

and second virial coefficient B2 in Eq. !11". For semiflexible
chains, that approximation overcounts the excluded volume

because it neglects simultaneous contacts between a pair of

molecules at two or more separate points along the chains.

This overestimation of the excluded volume, which increases

with chain length n, is more pronounced in an isotropic

phase, since the average conformations of chains in a nem-

atic phase are more ‘‘rod-like’’ and hence more accurately

described by the approximation, Eq. !11". Therefore the
present theory overestimates the difference in translational

entropy between the isotropic and nematic phases, which ac-

counts for overestimating the degree of orientational order.

The fact that the approximation Eq. !11" overestimates
the pair excluded volume and therefore B2 in an isotropic

phase of semiflexible chain molecules implies that the accu-

racy of the theory in predicting the pressure vs. density of

flexible (<"0) tangent n-mers with large n, mentioned in

Sec. II D, must be due to a cancellation of errors at high

densities. A similar cancellation of errors has been noted

previously in connection with GFD theory.38 This effect may

explain why the present theory for the N–I transition prop-

erties of semiflexible n-mers appears to be more accurate at

larger n.

In summary, we have taken several steps toward devel-

oping a quantitative first-principles theory of nematic order-

ing in athermal chain fluids, both rigid and semiflexible. Fur-

ther studies are required to address the inaccuracies of the

theory noted above, especially in characterizing the behavior

of rigid fused hard-sphere chains and overestimating the ori-

entational order of semiflexible chains with small n. In the

latter connection, it would be of interest to seek systematic

corrections to the monomer–dimer representation of the

chain excluded volume. Other directions for future study in-

clude extending the theory to other molecular architectures

and to models of thermotropic liquid crystals.
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